Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Deep adversarial data augmentation with attribute guided for person re-identification

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

Person re-identification (Re-ID) is aimed at matching the identity class of pedestrian image across multiple different camera views. Most existing Re-ID methods rely on learning model from labeled pairwise training data. This leads to poor scalability and usability due to the lack of mass identity labeling of images for every camera pairs. In this paper, we address this problem by proposing a deep adversarial learning approach capable of generating images for person Re-ID. Specifically, we propose a deep adversarial data augmentation method with attribute (DADAA) which generates various person images by generative adversarial augmentation. The mid-level attribute information is integrated into the proposed DADAA, which is formulated as learning a one-to-many mapping from labeled source dataset to a large-scale target dataset for increasing data diversity against overfitting. Extensive comparative evaluations show that the DADAA method significantly improves the performance of person Re-ID and validate the superiority of this DADAA method over some state-of-the-art methods on Market-1501 and DukeMTMC-ReID.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Zhong, B., Bai, B., Li, J., Zhang, Y., Fu, Y.: Hierarchical tracking by reinforcement learning-based searching and coarse-to-fine verifying. IEEE Trans. Image Process. 28(5), 2331–2341 (2019). https://doi.org/10.1109/TIP.2018.2885238

    Article  MathSciNet  Google Scholar 

  2. Zhou, Q., Zhong, B., Zhang, Y., Li, J., Fu, Y.: Deep alignment network based multi-person tracking with occlusion and motion reasoning. IEEE Trans. Multimed. (2018). https://doi.org/10.1109/TMM.2018.2875360

    Article  Google Scholar 

  3. Ding, G., Chen, W., Zhao, S., Han, J., Liu, Q.: Real-time scalable visual tracking via quadrangle kernelized correlation filters. IEEE Trans. Intell. Transp. Syst. 19(1), 140–150 (2018). https://doi.org/10.1109/TITS.2017.2774778

    Article  Google Scholar 

  4. Zhao, S., Yao, H., Gao, Y., Ji, R., Ding, G.: Continuous probability distribution prediction of image emotions via multitask shared sparse regression. IEEE Trans. Multimed. 19(3), 632–645 (2017). https://doi.org/10.1109/TMM.2016.2617741

    Article  Google Scholar 

  5. Zhao, S., Yao, H., Gao, Y., Ding, G., Chua, T.-S.: Predicting personalized image emotion perceptions in social networks. IEEE Trans. Affect. Comput. 9(4), 526–540 (2018). https://doi.org/10.1109/TAFFC.2016.2628787

    Article  Google Scholar 

  6. Zhao, S., Gao, Y., Ding, G., Chua, T.-S.: Real-time multimedia social event detection in microblog. IEEE Trans. Cybern. 48(11), 3218–3231 (2018). https://doi.org/10.1109/TCYB.2017.2762344

    Article  Google Scholar 

  7. Liu, H., Ji, R., Wang, J., Shen, C.J.: Ordinal constraint binary coding for approximate nearest neighbor search. IEEE Trans. Pattern Anal. Mach. Intell. 41(4), 941–955 (2019)

    Article  Google Scholar 

  8. Ji, R., Chen, F., Cao, L., Gao, Y.: Cross-modality microblog sentiment prediction via bi-layer multimodal hypergraph learning. IEEE Trans. Multimed. 21(4), 1062–1075 (2019)

    Article  Google Scholar 

  9. Chen, Y.-C., Zhu, X., Zheng, W.-S., Lai, J.-H.: Person re-identification by camera correlation aware feature augmentation. IEEE Trans. Pattern Anal. Mach. Intell. 40(2), 392–408 (2018). https://doi.org/10.1109/TPAMI.2017.2666805

    Article  Google Scholar 

  10. Varior, R.R., Wang, G., Lu, J., Liu, T.: Learning invariant color features for person reidentification. IEEE Trans. Image Process. 25(7), 3395–3410 (2016). https://doi.org/10.1109/TIP.2016.2531280

    Article  MathSciNet  MATH  Google Scholar 

  11. Gray, D., Tao, H.: Viewpoint invariant pedestrian recognition with an ensemble of localized features. In: European Conference on Computer Vision, pp. 262–275 (2008)

  12. Liao, S., Hu, Y., Zhu, X., Li, S.Z.: Person re-identification by local maximal occurrence representation and metric learning. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2197–2206 (2015)

  13. Köstinger, M., Hirzer, M., Wohlhart, P., Roth, P.M., Bischof, H.: Large scale metric learning from equivalence constraints. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2288–2295 (2012)

  14. Zheng, W.-S., Gong, S., Xiang, T.: Reidentification by relative distance comparison. IEEE Trans. Pattern Anal. Mach. Intell. 35(3), 653–668 (2013). https://doi.org/10.1109/TPAMI.2012.138

    Article  Google Scholar 

  15. Wang, T., Gong, S., Zhu, X., Wang, S.: Person re-identification by discriminative selection in video ranking. IEEE Trans. Pattern Anal. Mach. Intell. 38(12), 2501–2514 (2016). https://doi.org/10.1109/TPAMI.2016.2522418

    Article  Google Scholar 

  16. Zheng, L., Yang, Y., Hauptmann, A.G.: Person re-identification: past, present and future. CoRR arXiv:1610.02984 (2016)

  17. Zheng, L., Shen, L., Tian, L., Wang, S., Wang, J., Tian, Q.: Scalable person re-identification: a benchmark. In: International Conference on Machine Learning, pp. 1116–1124 (2015)

  18. Zheng, Z., Zheng, L., Yang, Y.: Unlabeled samples generated by GAN improve the person re-identification baseline in vitro. In: IEEE International Conference on Computer Vision, pp. 3774–3782 (2017)

  19. Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: IEEE International Conference on Computer Vision, pp. 2242–2251 (2017)

  20. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein generative adversarial networks. In: International Conference on Machine Learning, pp. 214–223 (2017)

  21. Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 5967–5976 (2017)

  22. Khamis, S., Kuo, C.-H., Singh, V.K., Shet, V.D., Davis, L.S.: Joint learning for attribute-consistent person re-identification. In: European Conference on Computer Vision, pp. 134–146 (2014)

  23. Su, C., Zhang, S., Xing, J., Gao, W., Tian, Q.: Deep attributes driven multi-camera person re-identification. In: European Conference on Computer Vision, pp. 475–491 (2016)

  24. Wang, J., Zhu, X., Gong, S., Li, W.: Transferable joint attribute-identity deep learning for unsupervised person re-identification. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2275–2284 (2018)

  25. Choi, Y., Choi, M.-J., Kim, M., Ha, J.-W., Kim, S., Choo, J.: StarGAN: unified generative adversarial networks for multi-domain image-to-image translation. In: International Conference on Machine Learning, pp. 8789–8797 (2018)

  26. Ustinova, E., Ganin, Y., Lempitsky, V.S.: Multiregion bilinear convolutional neural networks for person re-identification. CoRR arXiv:1512.05300 (2015)

  27. Wu, L., Shen, C., van den Hengel, A.: Deep linear discriminant analysis on fisher networks: a hybrid architecture for person re-identification. Pattern Recognit. 65, 238–250 (2017). https://doi.org/10.1016/j.patcog.2016.12.022

    Article  Google Scholar 

  28. Chen, D., Yuan, Z., Chen, B., Zheng, N.: Similarity learning with spatial constraints for person re-identification. In: International Conference on Machine Learning, pp. 1268–1277 (2016)

  29. Zhang, L., Xiang, T., Gong, S.: Learning a discriminative null space for person re-identification. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1239–1248 (2016)

  30. Varior, R.R., Haloi, M., Wang, G.: Gated Siamese convolutional neural network architecture for human re-identification. In: European Conference on Computer Vision, pp. 791–808 (2016)

  31. Barbosa, I.B., Cristani, M., Caputo, B., Rognhaugen, A., Theoharis, T.: Looking beyond appearances: synthetic training data for deep CNNs in re-identification. Comput. Vis. Image Underst. 167, 50–62 (2018). https://doi.org/10.1016/j.cviu.2017.12.002

    Article  Google Scholar 

  32. Zheng, Z., Zheng, L., Yang, Y.: A discriminatively learned CNN embedding for person reidentification. TOMCCAP 14(1), 13:11–13:20 (2018). https://doi.org/10.1145/3159171

    Article  MathSciNet  Google Scholar 

  33. Geng, M., Wang, Y., Xiang, T., Tian, Y.: Deep transfer learning for person re-identification. CoRR arXiv:1611.05244 (2016)

  34. Sun, Y., Zheng, L., Yang, Y., Tian, Q., Wang, S.: Beyond part models: person retrieval with refined part pooling (and a strong convolutional baseline). In: European Conference on Computer Vision, pp. 501–518 (2018)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pingyang Dai.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Q., Dai, P., Chen, P. et al. Deep adversarial data augmentation with attribute guided for person re-identification. SIViP 15, 655–662 (2021). https://doi.org/10.1007/s11760-019-01523-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-019-01523-3

Keywords