Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

One-dimensional block-matching motion estimation algorithm

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

Motion estimation is a fundamental problem in the field of video restoration. The traditional two-dimensional block-matching algorithm has better search quality, but the search speed is slow. Based on the two-dimensional block-matching algorithm, we perform dimensionality reduction processing on the matching block and propose a one-dimensional block-matching motion estimation algorithm. According to the error of the motion estimation of the video sequence to be repaired, we establish a new motion estimation model to discuss the reasons for the deviation of the motion estimation. The experimental results show that compared with the traditional two-dimensional block-matching motion estimation algorithm, the one-dimensional block-matching motion estimation algorithm can significantly calculate the search speed under the premise of ensuring the accuracy of the estimation. In the experiments with multiple impairments added, the stability of the one-dimensional block-matching motion estimation algorithm is better than that of the two-dimensional block-matching motion estimation algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Gallant, M., Cote, G., Kossentini, F.: An efficient computation-constrained block-based motion estimation algorithm for low bit rate video coding. IEEE Trans. Image Process. 8(12), 1816–1823 (1999)

    Article  Google Scholar 

  2. Puri, R., Majumdar, A., Ramchandran, K.: PRISM: a video coding paradigm with motion estimation at the decoder. IEEE Trans. Image Process. 16(10), 2436–2448 (2007)

    Article  Google Scholar 

  3. Shen, L., Liu, Z., Yan, T., et al.: View-adaptive motion estimation and disparity estimation for low complexity multiview video coding. IEEE Trans. Circuits Syst. Video Technol. 20(6), 925–930 (2010)

    Article  Google Scholar 

  4. Pan, Z., Zhang, Y., Kwong, S.: Efficient motion and disparity estimation optimization for low complexity multiview video coding. IEEE Trans. Broadcast. 61(2), 166–176 (2015)

    Article  Google Scholar 

  5. Meuel, H., Ostermann, J.: Analysis of affine motion-compensated prediction in video coding. IEEE Trans. Image Process. 29, 7359–7374 (2020)

    Article  MATH  Google Scholar 

  6. Li, X., Zhao, D., Ma, S., et al.: Fast disparity and motion estimation based on correlations for multiview video coding. IEEE Trans. Consum. Electron. 54(4), 2037–2044 (2008)

    Article  Google Scholar 

  7. Cheung, H., Siu, W., Feng, D., et al.: New block-based motion estimation for sequences with brightness variation and its application to static sprite generation for video compression. IEEE Trans. Circuits Syst. Video Technol. 18(4), 522–527 (2008)

    Article  Google Scholar 

  8. Natarajan, B., Bhaskaran, V., Konstantinides, K.: Low-complexity block-based motion estimation via one-bit transforms. IEEE Trans. Circuits Syst. Video Technol. 7(4), 702–706 (1997)

    Article  Google Scholar 

  9. Fan, Y., Wu, S., Lin, B.: Three-dimensional depth map motion estimation and compensation for 3D video compression. IEEE Trans. Magn. 47(3), 691–695 (2011)

    Article  Google Scholar 

  10. Gomaa, A., Abdelwahab, M. M., Abo-Zahhad, M.: Real-time algorithm for simultaneous vehicle detection and tracking in aerial view videos. IEEE MWSCA 222–225 (2018)

  11. Rao, S., Wang, H., Kashif, R.: Robust optical flow estimation to enhance behavioral research on ants. Dig Sign Process 120, 103284 (2022)

    Article  Google Scholar 

  12. Gomaa, A., Abdelwahab, M.M., Abo-Zahhad, M., et al.: Robust vehicle detection and counting algorithm employing a convolution neural network and optical flow. Sensors 19, 4588 (2019)

    Article  Google Scholar 

  13. Gomaa, A., Abdelwahab, M.M., Abo-Zahhad, M.: Efficient vehicle detection and tracking strategy in aerial videos by employing morphological operations and feature points motion analysis. Multimed Tool Appl 79, 26023–26043 (2020)

    Article  Google Scholar 

  14. Li, Q.L., Wang, G.Y., Zhang, G.L., et al.: Accurate global motion estimation based on pyramid with mask. J Comput Aid Design Graph 21(6), 758–762 (2009)

    Google Scholar 

  15. Chan, E., Panchanathan, S.: Motion estimation architecture for video compression. IEEE Trans. Consum. Electron. 39(3), 292–297 (1993)

    Article  Google Scholar 

  16. Nam, S.H., Lee, M.K.: Flexible VLSI architecture of motion estimator for video image compression. IEEE Transact Circ Sys II: Analog Digit Sign Process 43(6), 467–470 (1996)

    Google Scholar 

  17. Wu, C.M., Yeh, D.K.: A VLSI motion estimator for video image compression. IEEE Trans. Consum. Electron. 39(4), 837–846 (1993)

    Article  Google Scholar 

  18. Zhao, N., Connor, D.O., Basarab, A., et al.: Motion compensated dynamic mri reconstruction with local affine optical flow estimation. IEEE Trans. Biomed. Eng. 66(11), 3050–3059 (2019)

    Article  Google Scholar 

  19. Ates, H.F., Altunbasak, Y.: Rate-distortion and complexity optimized motion estimation for H.264 video coding. IEEE Trans Circ Sys Video Tech 18(2), 159–171 (2008)

    Article  Google Scholar 

  20. Jiang, X.C., Li, G.P., Wang, G.Z., et al.: Multi-core parallel video coding algorithm based on AVS+real-time encoding. J. Electron. Inf. Technol. 36(4), 810–816 (2014)

    Google Scholar 

  21. Mukaddim, R.A., Meshram, N.H., Mitchell, C.C.: Hierarchical motion estimation with bayesian regularization in cardiac elastography: simulation and in-vivo validation. IEEE transactions on ultrasonics, ferroelectrics, and frequency control, (2019)

  22. Qin, R., Ma, Z.Q., Zhang, X.Y., et al.: A fast and robust global motion estimation algorithm. J Air Force Eng Univer 13(6), 55–59 (2012)

    Google Scholar 

  23. Silveira, B., Paim, G., Abreu, B., et al.: Power-efficient sum of absolute differences hardware architecture using adder compressors for integer motion estimation design. IEEE Trans Circuit Sys 64(12), 3126–3137 (2017)

    Article  Google Scholar 

  24. Jia, L.H., Tsui, C.Y., Au, O.C., et al.: A low-power motion estimation architecture for hevc based on a new sum of absolute difference computation. IEEE Trans. Circuits Syst. Video Technol. 30(1), 243–255 (2020)

    Article  Google Scholar 

  25. Tang, J.L., Zheng, J.F., Li, X.Y., et al.: Video stabilization algorithm based on feature matching and motion compensation. Appl Res Comput 35(2), 608–610 (2018)

    Google Scholar 

  26. Liu, H.H., Lei, Y., Xie, C.S.: Fast block-matching motion estimation based on a double-cross search algorithm. Comput Res Develop 43(9), 1666–1673 (2006)

    Article  Google Scholar 

  27. Li, H.J., Li, H.P., Li, J.X.: A multi-pattern switching algorithm for fast motion estimation. J. Electron. Inf. Technol. 35(3), 689–695 (2013)

    Article  Google Scholar 

  28. Zhang, M.L., Chen, J.G., Yuan, H.Y., et al.: Video stabilization on a six-rotor aircraft platform. J. Tsinghua Univ. 54(11), 1412–1416 (2014)

    Google Scholar 

  29. Zhang, T., Fei, S.M., Li, X.D., et al.: Fast global motion estimation and moving object extraction algorithm in image sequences. J. Southeast Univ. 24(2), 192–196 (2008)

    Google Scholar 

  30. Li, R., Zeng, B., Liou, M.L.: A new three-step search algorithm for block motion estimation. IEEE Trans. Circuits Syst. Video Technol. 4(4), 438–442 (1994)

    Article  Google Scholar 

Download references

Acknowledgements

This research is a key R&D project of the Science and Technology Department of Jilin Province, the Project No. is 20200401095GX.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunqing Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Q., Liu, Y., Li, Q. et al. One-dimensional block-matching motion estimation algorithm. SIViP 17, 11–19 (2023). https://doi.org/10.1007/s11760-022-02198-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-022-02198-z

Keywords