Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Nonorthogonal multiple access with adaptive transmit power and energy harvesting using intelligent reflecting surfaces for cognitive radio networks

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

In this paper, we derive the throughput of cognitive radio networks (CRN) where the secondary source \(S_S\) harvests energy and adapts its power to generate an interference at primary destination \(P_D\) less than T. \(S_S\) transmits a linear combination of symbols to K nonorthogonal multiple access (NOMA) users. Intelligent reflecting surfaces (IRS) are placed between the secondary source and NOMA users. A set \(I_i\) of reflectors of IRS is dedicated to user \(U_i\) so that all reflections are in phase at \(U_i\). We derive the throughput at each user and the total throughput when IRS are used in CRN-NOMA. We optimize the NOMA powers as well as the harvesting duration \(\alpha \). When \(N_i=8,32\) reflectors per user are employed, we obtain 24 and 41 dB gain with respect to CRN-NOMA with adaptive transmit power, energy harvesting and without IRS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Basar, E., Di Renzo, M., De Rosny, J., Debbah, M., Alouini, M.-S., Zhang, R.: Wireless Communications Through Reconfigurable Intelligent Surfaces. IEEE Access 7, 2019 (2019)

    Article  Google Scholar 

  2. Zhang, H., Di, B., Song, L., Han, Z.: Reconfigurable intelligent surfaces assisted communications with limited phase shifts: how many phase shifts are enough? IEEE Trans. Veh. Technol. 69(4), 4498–4502 (2020)

    Article  Google Scholar 

  3. Di Renzo, M.: 6G wireless: wireless networks empowered by reconfigurable intelligent surfaces. In: 2019 25th Asia-Pacific Conference on Communications (APCC)

  4. Basar, E.: Reconfigurable intelligent surface-based index modulation: a new beyond MIMO paradigm for 6G. IEEE Trans. Commun. 68, 3187–3196 (2020)

    Article  Google Scholar 

  5. Wu, Q., Zhang, R.: Towards smart and reconfigurable environment: intelligent reflecting surface aided wireless network. IEEE Commun. Mag. 58(1), 106–112 (2020)

    Article  Google Scholar 

  6. Huang, C., Zappone, A., Alexandropoulos, G.C., Debbah, M., Yuen, C.: Reconfigurable intelligent surfaces for energy efficiency in wireless communication. IEEE Trans. Wirel. Commun. 18(8), 4157–4170 (2019)

    Article  Google Scholar 

  7. Alexandropoulos, G.C., Vlachos, E.: A hardware architecture for reconfigurable intelligent surfaces with minimal active elements for explicit channel estimation. In: ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (2020)

  8. Guo, H., Liang, Y.-C., Chen, J., Larsson, E.G.: Weighted sum-rate maximization for reconfigurable intelligent surface aided wireless networks. IEEE Trans. Wirel. Commun. 19, 3064–3076 (2020)

    Article  Google Scholar 

  9. Thirumavalavan, V.C., Jayaraman, T.S.: BER analysis of reconfigurable intelligent surface assisted downlink power domain NOMA system. In: 2020 International Conference on COMmunication Systems and NETworkS (COMSNETS) (2020)

  10. Pradhan, C., Li, A., Song, L., Vucetic, B., Li, Y.: Hybrid precoding design for reconfigurable intelligent surface aided mmWave communication systems. IEEE Wirel. Commun. Lett. 9, 1041–1045 (2020)

    Article  Google Scholar 

  11. Ying, K., Gao, Z., Lyu, S., Wu, Y., Wang, H., Alouini, M.-S.: GMD-based hybrid beamforming for large reconfigurable intelligent surface assisted millimeter-wave massive MIMO. IEEE Access 8, 109530–19539 (2020)

    Article  Google Scholar 

  12. Yang, L., Guo, W., Ansari, I.S.: Mixed dual-hop FSO-RF communication systems through reconfigurable intelligent surface. IEEE Commun. Lett. 24, 1558–1562 (2020)

    Article  Google Scholar 

  13. Di, B., Zhang, H., Li, L., Song, L., Li, Y., Han, Z.: Practical hybrid beamforming with finite-resolution phase shifters for reconfigurable intelligent surface based multi-user communications. IEEE Trans. Veh. Technol. 69(4), 4565–4570 (2020)

    Article  Google Scholar 

  14. Nadeem, Q.-A., Kammoun, A., Chaaban, A., Debbah, M., Alouini, M.-S.: Asymptotic max-min SINR analysis of reconfigurable intelligent surface assisted MISO systems. IEEE Trans. Wirel. Commun. 19, 7748–7764 (2020)

  15. Zhao, W., Wang, G., Atapattu, S., Tsiftsis, T.A., Tellambura, C.: Is backscatter link stronger than direct link in reconfigurable intelligent surface-assisted system? IEEE Commun. Lett. 24, 1342–1346 (2020)

    Article  Google Scholar 

  16. Li, S., Duo, B., Yuan, X., Liang, Y.-C., Di Renzo, M.: Reconfigurable intelligent surface assisted UAV communication: joint trajectory design and passive beamforming. IEEE Wirel. Commun. Lett. 9, 716–720 (2020)

    Article  Google Scholar 

  17. Dai, L., Wang, B., Wang, M., Yang, X., Tan, J., Bi, S., Xu, S., Yang, F., Chen, Z., Di Renzo, M., Chae, C.-B., Hanzo, L.: Reconfigurable intelligent surface-based wireless communications: antenna design, prototyping, and experimental results. IEEE Access 8, 45913–45923 (2020)

    Article  Google Scholar 

  18. Hua, S., Shi, Y.: Reconfigurable intelligent surface for green edge inference in machine learning. In: 2019 IEEE Globecom Workshops (GC Wkshps) (2019)

  19. Huang, C., Alexandropoulos, G.C., Yuen, C., Debbah, M.: Indoor signal focusing with deep learning designed reconfigurable intelligent surfaces. In: 2019 IEEE 20th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC) (2019)

  20. Alhamad, R., Boujemaa, H.: Throughput enhancement of cognitive radio networks-nonorthogonal multiple access with energy harvesting and adaptive transmit power. Trans. Emerg. Telecommun. Technol. 31(8), e3980 (2020)

    Google Scholar 

  21. Alhamad, R., Boujemaa, H.: Optimal power allocation for CRN-NOMA systems with adaptive transmit power. Signal Image Video Process. 14(7), 1327–1334 (2020)

    Article  Google Scholar 

  22. Alhamad, R., Boujemaa, H.: Non orthogonal multiple access for MC-CDMA systems. Signal Image Video Process. (2021, Submitted to)

  23. Xi, Y., Burr, A., Wei, J.B., Grace, D.: A general upper bound to evaluate packet error rate over quasi-static fading channels. IEEE Trans. Wirel. Commun. 10(5), 1373–1377 (2011)

    Article  Google Scholar 

  24. Proakis, J.: Digital Communications, 5th edn. Mac Graw-Hill, New York (2007)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raed Alhamad.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alhamad, R. Nonorthogonal multiple access with adaptive transmit power and energy harvesting using intelligent reflecting surfaces for cognitive radio networks. SIViP 17, 83–89 (2023). https://doi.org/10.1007/s11760-022-02206-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-022-02206-2

Keywords