Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Automotive adhesive defect detection based on improved YOLOv8

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

In automotive adhesive defect detection, manual inspection suffers from low efficiency and blind spots in human vision, which affects the performance of parts. Therefore, automated detection methods are particularly important. To address the issue of adhesive defects significantly impacting production during automated gluing processes, we propose an adhesive defect detection method for automotive applications based on the improved YOLOv8 (named YOLOv8n-SSE). First, we used the SSE (skip squeeze and excitation) attention mechanism in the backbone part to dynamically adjust the importance of different channels in our model and allow our model to selectively focus on important features. Then, the original bounding box loss function is replaced by the WIoU loss function. Experimental results demonstrate that this method improves the mAP50 of the original YOLOv8n by 3.25% and achieves an average detection speed of 7.9ms per image, equivalent to 126.58 frames per second (FPS), meeting the real-time defect detection requirements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data Availability

The dataset we utilized cannot be made publicly available due to commercial contracts. While we are unable to provide open access to the dataset, we will furnish detailed descriptions of the dataset within reasonable bounds to assist other researchers in comprehending our research methods and findings.

References

  1. Alexey, B., Wang, C-.Y., Mark Liao, H.-Y.: Yolov4: optimal speed and accuracy of object detection. arXiv preprint arXiv:2004.10934 (2020)

  2. Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T.: An image is worth 16x16 words: transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)

  3. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 580–587 (2014)

  4. Goyal, A., Bochkovskiy, A., Deng, J., Koltun, V.: Non-deep networks. Adv. Neural. Inf. Process. Syst. 35, 6789–6801 (2022)

    Google Scholar 

  5. Kaiming, H., Gkioxari, G., Dollár, P., Girshick, R.: Mask r-cnn. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2961–2969 (2017)

  6. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7132–7141 (2018)

  7. Hu, W., Wang, J., Li, B., Deng, H.: Defect detection network based on feature fusion and parallel cascade design. In: International Conference on Mechanisms and Robotics (ICMAR 2022) vol. 12331, pp. 1233133 (2022)

  8. Itti, L., Koch, C., Niebur, E.: A model of saliency-based visual attention for rapid scene analysis. IEEE Trans. Pattern Anal. Mach. Intell. 20(11), 1254–1259 (1998)

    Article  Google Scholar 

  9. Jiang, Z., Hu, X., Wang, S.: A mobile-transformer algorithm for car paint defect detection. In: 2022 5th International Conference on Mechatronics, Robotics and Automation (ICMRA), pp. 146–150. IEEE (2022)

  10. Jocher, G., Chaurasia, A., Qiu, J.: YOLO by Ultralytics (2023)

  11. Leontaris, L., Dimitriou, N., Nikolousis, A., Tzovaras, D., Papageorgiou, E.: Inspection of surface defects in metal processing industry using unet-based architectures (2023)

  12. Li, H., Shi, H., Anghong, D., Mao, Y., Kai Fan, Yu., Wang, Y.S., Wang, S., Xiuxiu, X., Tian, L., et al.: Symptom recognition of disease and insect damage based on mask r-cnn, wavelet transform, and f-rnet. Front. Plant Sci. 13, 922797 (2022)

    Article  PubMed  PubMed Central  Google Scholar 

  13. Li, L., Wang, Z., Zhang, T.: Gbh-yolov5: Ghost convolution with bottleneckcsp and tiny target prediction head incorporating yolov5 for pv panel defect detection. Electronics 12(3), 561 (2023)

    Article  Google Scholar 

  14. Li, M., Wang, H., Wan, Z.: Surface defect detection of steel strips based on improved yolov4. Comput. Electr. Eng. 102, 108208 (2022)

    Article  Google Scholar 

  15. Li, Y., Huang, H., Xie, Q., Yao, L., Chen, Q.: Research on a surface defect detection algorithm based on mobilenet-ssd. Appl. Sci. 8(9), 1678 (2018)

    Article  CAS  Google Scholar 

  16. Liu, T., He, Z.: Tas2-net: Triple-attention semantic segmentation network for small surface defect detection. IEEE Trans. Instrum. Meas. 71, 1–12 (2022)

    Article  Google Scholar 

  17. Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C. Y., Berg, A. C.: Single shot multibox detector. In: Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11–14, 2016, Proceedings, Part I 14, pages 21–37. Springer (2016)

  18. Mehta, S., Azad, A.P., Chemmengath, S.A., Vikas, R., Shivkumar, K.: Deepsolareye: Power loss prediction and weakly supervised soiling localization via fully convolutional networks for solar panels. In: 2018 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 333–342. IEEE (2018)

  19. Pan, G., Zheng, Y., Guo, S., Lv, Y.: Automatic sewer pipe defect semantic segmentation based on improved u-net. Autom. Constr. 119, 103383 (2020)

    Article  Google Scholar 

  20. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Gregory, C., Trevor, K., Zeming L., Natalia, G., Luca, A., et al.: Pytorch: An imperative style, high-performance deep learning library. Adv. Neural Inf. Process. Syst. 32 (2019)

  21. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 779–788 (2016)

  22. Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. Adv. Neural Inf. Process. Syst. 28 (2015)

  23. Rezatofighi, H., Tsoi, N., Jun Young, G., Amir, S., Ian, R., Silvio, S.: Generalized intersection over union: a metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019)

  24. Shi, J., Li, Z., Zhu, T., Wang, D., Ni, C.: Defect detection of industry wood veneer based on nas and multi-channel mask r-cnn. Sensors 20(16), 4398 (2020)

    Article  PubMed  PubMed Central  Google Scholar 

  25. Shi, X., Zhou, S., Tai, Y., Wang, J., Wu, S., Liu, J., Zhang, Z.: An improved faster r-cnn for steel surface defect detection. In: 2022 IEEE 24th International Workshop on Multimedia Signal Processing (MMSP), pp. 1–5. IEEE (2022)

  26. Shitong, H., Bin, D., Wang, H., Gang, W.: Inspection of surface defects on stay cables using a robot and transfer learning. Autom. Constr. 119, 103382 (2020)

    Article  Google Scholar 

  27. Tao, X., Zhang, D., Wang, Z., Liu, X., Zhang, H., De, X.: Detection of power line insulator defects using aerial images analyzed with convolutional neural networks. IEEE Trans. Syst. Man Cybernet. Syst. 50(4), 1486–1498 (2018)

    Article  Google Scholar 

  28. Wen, T., Lizhong, Z.: Research on automobile adhesive defect method based on yolov3 (in chinese). Inf. Technol. Inf. 2(2) (2021)

  29. Tong, Z., Chen, Y., Xu, Z.,Yu, R.: Wise-iou: Bounding box regression loss with dynamic focusing mechanism. arXiv preprint arXiv:2301.10051, 2023

  30. Wang, P.-H., Lin, C.-C.: Data augmentation method for fabric defect detection. In: 2022 IEEE International Conference on Consumer Electronics - Taiwan, pp. 255–256 (2022)

  31. Wang, S., Zhao, S.L., Zhang, Z.: Research on detection technology of pvc coating for automotive wheel cover based on machine vision [j]. Mach. Des. Manuf. 5, 184–188 (2021)

    Google Scholar 

  32. Wang, Y., Wang, H., Xin, Z.: Efficient detection model of steel strip surface defects based on yolo-v7. IEEE Access 10, 133936–133944 (2022)

    Article  Google Scholar 

  33. Xiao, L., Wu, B., Hu, Y.: Surface defect detection using image pyramid. IEEE Sensors J 20, 7181–7188 (2020)

  34. Xie, H., Zhang, Y., Wu, Z.: An improved fabric defect detection method based on ssd. AATCC J. Res., 8(1_suppl):181–190 (2021)

  35. Yiming, X., Zhang, K., Wang, L.: Metal surface defect detection using modified yolo. Algorithms 14(9), 257 (2021)

    Article  Google Scholar 

  36. Yingying, X., Li, D., Xie, Q., Qiaoyun, W., Wang, J.: Automatic defect detection and segmentation of tunnel surface using modified mask r-cnn. Measurement 178, 109316 (2021)

    Article  Google Scholar 

  37. Zhang, H., Cissé, M., Dauphin, Y.N., Lopez-Paz, D.: Mixup: Beyond empirical risk minimization. CoRR arXiv:1710.09412, (2017)

  38. Zhang, J., Ding, R., Ban, M., Guo, T.: Fdsnet: An accurate real-time surface defect segmentation network. In: ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 3803–3807 (2022)

  39. Zhang, J., Jiabin, X., Zhu, L., Zhang, K., Liu, T., Wang, D., Wang, X.: An improved mobilenet-ssd algorithm for automatic defect detection on vehicle body paint. Multimedia Tools Appl. 79, 23367–23385 (2020)

    Article  Google Scholar 

  40. Zhang, Y.-F., Ren, W., Zhang, Z., Jia, Z., Wang, L., Tan, T.: Focal and efficient iou loss for accurate bounding box regression. Neurocomputing 506, 146–157 (2022)

    Article  Google Scholar 

  41. Zheng, Z., Wang, P., Liu, W., Li, J., Ye, R., Ren, D.: Distance-iou loss: Faster and better learning for bounding box regression. Proc. AAAI Conf. Artif. Intell. 34, 12993–13000 (2020)

    Google Scholar 

  42. Zhu, R., Xin, B., Deng, N., Fan, M.: Semantic segmentation using deeplabv3+ model for fabric defect detection. Wuhan Univ. J. Natl. Sci. (2022)

Download references

Funding

.This work was partly supported by Major science and technology projects of Jilin Provincial Department of science and technology (No.20210301038GX) and Open fund of Key Laboratory of symbolic computing and knowledge engineering of Ministry of education (No.93K172021K10).

Author information

Authors and Affiliations

Authors

Contributions

Wang, Sun and Dong, Chen wrote the main manuscript text, Wang and Dong are responsible for obtaining data, Sun and Chen are responsible for the experiment. All authors reviewed the manuscript.

Corresponding author

Correspondence to Jia Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Sun, Q., Dong, X. et al. Automotive adhesive defect detection based on improved YOLOv8. SIViP 18, 2583–2595 (2024). https://doi.org/10.1007/s11760-023-02932-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-023-02932-1

Keywords