Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A detailed review of wireless sensor network, jammer, the types, location, detection and countermeasures of jammers

  • Special Issue Paper
  • Published:
Service Oriented Computing and Applications Aims and scope Submit manuscript

Abstract

This review article explores jamming attacks, a critical security threat disrupting communication in wireless sensor networks (WSNs). We begin by introducing WSNs and highlighting the detrimental effects of jamming. The article then delves into various research directions for mitigating jamming in WSNs. This includes exploring different jamming techniques, their impact, and potential countermeasures. We categorize jamming techniques and analyze existing detection and localization mechanisms. Furthermore, we examine current security approaches for combating jamming attacks in WSNs. We identify unresolved research challenges in this area and compare our survey with previous work on jamming in WSNs. This review provides a comprehensive overview of jamming threats in WSNs, outlining existing solutions and future research directions for robust network security.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Akyildiz IF, Su W, Sankarasubramaniam Y, Cayirci E (2002) A survey on sensor networks. IEEE Commun Mag 40:102–114

    Article  Google Scholar 

  2. Mann PS, Singh S, Kumar A (2016) Computational intelligence based meta heuristic for energy-efficient routing in wireless sensor networks. In: Congress on evolutionary computation (CEC). IEEE, pp 4460–4467

  3. Stankovic JA (2008) Wireless sensor networks. Computer (Long Beach Calif) 41(10):92–95. https://doi.org/10.1109/MC.2008.441

    Article  Google Scholar 

  4. Singh SK, Singh MP (2010) Singh DK (2010) Routing protocols in wireless sensor networks—a survey. Int J Comput Sci Eng Surv 1(2):63–83

    Article  Google Scholar 

  5. Tamandani Y, Bokhari M (2015) SEPFL routing protocol based on fuzzy logic control to extend the lifetime and throughput of the wireless sensor network. Wirel Netw, pp 1–5

  6. A. Moh’d, H. Marzi, N. Aslam, et al (2011) A secure platform of wireless sensor networks. Elsevier, Amsterdam

    Google Scholar 

  7. Patil S, Chaudhari S (2016) DoS attack prevention technique in wireless sensor networks. Proc Comput Sci 79:715–721. https://doi.org/10.1016/J.PROCS.2016.03.094

    Article  Google Scholar 

  8. Perrig A, Stankovic J, Wagner D (2004) Security in wireless sensor networks. Commun ACM 47(6):53–57. https://doi.org/10.1145/990680.990707

    Article  Google Scholar 

  9. Jaitly S, Malhotra H, et al (2017‏) Security vulnerabilities and countermeasures against jamming attacks in wireless sensor networks: a survey‏. In: 2017 international conference on computer, communications and electronics (Comptelix). Accessed 15 Sep 2023. Available: https://ieeexplore.ieee.org/abstract/document/8004033/

  10. Akyildiz I, Melodia T et al (2007) A survey on wireless multimedia sensor networks. Comput Network 51(4):921–960. https://doi.org/10.1016/j.comnet.2006.10.002

    Article  Google Scholar 

  11. Akyildiz IF, Su W, Sankarasubramaniam Y, Cayirci E (2002) Wireless sensor networks: a survey. Comput Netw 38(4):393–422

    Article  Google Scholar 

  12. Stafford KM (1995) Characterization of blue whale calls from the northeast Pacific and development of a matched filter to locate blue whales on the U.S. Navy SOSUS (SOundSUrveillance System) arrays. Accessed 15 Sep 2023. Available: https://ir.library.oregonstate.edu/concern/graduate_thesis_or_dissertations/9880vv98j?locale=en

  13. Nishimura CE (1993) IUSS dual use: monitoring whales and earthquakes using SOSUS. Mar Technol Soc J 27(4):13–21

    Google Scholar 

  14. Chong CY, Kumar SP (2003) Sensor networks: evolution, opportunities, and challenges. Proc IEEE 91:1247–1256

    Article  Google Scholar 

  15. Gardner JW, Varadan VK, Awadelkarim OO (2003) Microsensors, MEMS, and smart devices. Wiley, New York

    Google Scholar 

  16. Wireless sensor networks (2006). Accessed 15 Sep 2023. Available: https://ieeexplore.ieee.org/abstract/document/4640674/.

  17. Mohanty P, Kabat MR (2016) Energy efficient reliable multi-path data transmission in WSN for healthcare application. Int J Wirel Inf Netw 23(2):162–172. https://doi.org/10.1007/S10776-016-0307-2/METRICS

    Article  Google Scholar 

  18. Yousefi H, Yeganeh MH, Alinaghipour N, Movaghar A (2012) Structure-free real-time data aggregation in wireless sensor networks. Comput Commun 35(9):1132–1140. https://doi.org/10.1016/J.COMCOM.2011.11.007

    Article  Google Scholar 

  19. Soliman HH, Hikal NA, Sakr NA (2012) A comparative performance evaluation of intrusion detection techniques for hierarchical wireless sensor networks. Egypt Inform J 13(3):225–238

    Article  Google Scholar 

  20. Mohanty P, Kabat MR (2014) A hierarchical energy efficient reliable transport protocol for wireless sensor networks. Ain Shams Eng J 5(4):1141–1155. https://doi.org/10.1016/J.ASEJ.2014.05.009

    Article  Google Scholar 

  21. Rani S, Gulati ET (2012) An improved PEGASIS protocol to enhance energy utilization in WSN. Accessed 17 Sep 2023. Available: http://www.ijccr.com

  22. Chauhan S, Nene MJ (2023) PEGASIS - LEACH: energy efficient protocols with route optimised techniques. In: 2023 international conference for advancement in technology, ICONAT 2023. https://doi.org/10.1109/ICONAT57137.2023.10080381

  23. Sadhana S, Sivaraman E, Daniel D (2021) Enhanced energy efficient routing for wireless sensor network using extended power efficient gathering in sensor information systems (E-PEGASIS) protocol. Proc Comput Sci 194:89–101. https://doi.org/10.1016/J.PROCS.2021.10.062

    Article  Google Scholar 

  24. Chao CM, Hsiao TY (2009) Design of structure-free and energy-balanced data aggregation in wireless sensor networks. In: 11th IEEE international conference on high performance computing and communications, HPCC 2009, pp. 222–229. https://doi.org/10.1109/HPCC.2009.63.

  25. Yeganeh MH, Yousefi H, Alinaghipour N, Movaghar A (2011) RDAG: a structure-free real-time data aggregation protocol for wireless sensor networks. In: Proceedings - 17th IEEE international conference on embedded and real-time computing systems and applications, RTCSA 2011, vol 1, pp 51–60. https://doi.org/10.1109/RTCSA.2011.70.

  26. Ali ES, Saeed RA, Eltahir IK, Khalifa OO (2023) A systematic review on energy efficiency in the internet of underwater things (IoUT): recent approaches and research gaps. J Netw Comput Appl 213:103594. https://doi.org/10.1016/J.JNCA.2023.103594

    Article  Google Scholar 

  27. Mpitziopoulos A, Gavalas D, Konstantopoulos C, Pantziou G (2009) A survey on jamming attacks and countermeasures in WSNs. IEEE Commun Surv Tutor 11(4):42–56. https://doi.org/10.1109/SURV.2009.090404

    Article  Google Scholar 

  28. Pantazis NA (2023) A survey on power control issues in wireless sensor networks. IEEE Commun Surv Tutor 9(4):86–107

    Article  MathSciNet  Google Scholar 

  29. Radi M, Dezfouli B, Bakar KA, Lee M (2012) Multipath routing in wireless sensor networks: survey and research challenges. Sensors 12(1):650–685. https://doi.org/10.3390/s120100650

    Article  Google Scholar 

  30. Joshi GP, Nam SY, Kim SW (2013) Cognitive radio wireless sensor networks: Applications, challenges and research trends. Sensors 13(9):11196–11228. https://doi.org/10.3390/s130911196

    Article  Google Scholar 

  31. Abdalkafor AS, Aliesawi SA (2022) Efficient data aggregation strategy in wireless sensor networks: challenges and significant applications. Lect Notes Netw Syst 394:131–139. https://doi.org/10.1007/978-981-19-0604-6_12/COVER

    Article  Google Scholar 

  32. Sharma S, Bansal RK, Bansal S (2014) Issues and challenges in wireless sensor networks. In: Proceedings - 2013 international conference on machine intelligence research and advancement, ICMIRA 2013, pp 58–62. https://doi.org/10.1109/ICMIRA.2013.18

  33. De La Piedra A, Benitez-Capistros F, Dominguez F, Touhafi A (2013) Wireless sensor networks for environmental research: a survey on limitations and challenges. IEEE EuroCon 2013:267–274. https://doi.org/10.1109/EUROCON.2013.6624996

    Article  Google Scholar 

  34. Wood AD, Stankovic JA (2002) Denial of service in sensor networks. Computer 35(10):54–62. https://doi.org/10.1109/MC.2002.1039518

    Article  Google Scholar 

  35. Mpitziopoulos A, Gavalas D, Pantziou G, Konstantopoulos C (2007) Defending wireless sensor networks from jamming attacks. In: IEEE international symposium on personal, indoor and mobile radio communications, PIMRC, 2007. https://doi.org/10.1109/PIMRC.2007.4394775

  36. Commander CW, Pardalos PM, Ryabchenko V, Uryasev S, Zrazhevsky G (2007) The wireless network jamming problem. J Comb Optim 14(4):481–498. https://doi.org/10.1007/s10878-007-9071-7

    Article  MathSciNet  Google Scholar 

  37. Li M, Koutsopoulos I, Poovendran R (2010) Optimal jamming attack strategies and network defense policies in wireless sensor networks. IEEE Trans Mob Comput 9(8):1119–1133. https://doi.org/10.1109/TMC.2010.75

    Article  Google Scholar 

  38. Fan J, Liang T, Wang T, Liu J (2019) Identification and localization of the jammer in wireless sensor networks. Comput J 62(10):1515–1527. https://doi.org/10.1093/comjnl/bxz055

    Article  MathSciNet  Google Scholar 

  39. Çakiroglu M, Özcerit AT (2010) Jamming detection mechanisms for wireless sensor networks. In: ACM international conference proceeding series, vol 2008. https://doi.org/10.4108/ICST.INFOSCALE2008.3484

  40. Dhivyasri K (2020) Wireless sensor network jammer attack: a detailed review. Int J Res Appl Sci Eng Technol 8(8):233–238. https://doi.org/10.22214/ijraset.2020.30844

    Article  Google Scholar 

  41. Cortés-Leal A, Del-Valle-soto C, Cardenas C, Valdivia LJ, Del Puerto-Flores JA (2022) Performance metric analysis for a jamming detection mechanism under collaborative and cooperative schemes in industrial wireless sensor networks. Sensors 22(1):178. https://doi.org/10.3390/s22010178

    Article  Google Scholar 

  42. Alnifie G, Simon R (2007) A multi-channel defense against jamming attacks in wireless sensor networks. In: Q2SWinet’07: proceedings of the third ACM workshop on Q2S and security for wireless and mobile networks, pp 95–104. https://doi.org/10.1145/1298239.1298257

  43. Xu W, Ma K, Trappe W, Zhang Y (2006) Jamming sensor networks: attack and defense strategies. IEEE Netw 20:41–47

    Article  Google Scholar 

  44. Jinisha JJ, Jerine S (2021) Survey on various attacks and intrusion detection mechanisms in wireless sensor networks. Turk J Comput Math Educ 12(11):3694–3704

    Google Scholar 

  45. Wood AD, Stankovic JA, Zhou G (2007) DEEJAM: defeating energy-efficient jamming in IEEE 802.15. 4-based wireless networks. In: 4th Annual IEEE communications society conference on sensor, mesh and Ad Hoc communications and networks. IEEE, pp 60–69

  46. Vadlamani S, Eksioglu B, Medal H, Nandi A (2016) Jamming attacks on wireless networks: a taxonomic survey. Int J Prod Econ 172:76–94. https://doi.org/10.1016/J.IJPE.2015.11.008

    Article  Google Scholar 

  47. Xu W, Trappe W, Zhang Y, Wood T (2005) The feasibility of launching and detecting jamming attacks in wireless networks. In: Proceedings of the international symposium on mobile Ad Hoc networking and computing (MobiHoc), pp 46–57. https://doi.org/10.1145/1062689.1062697

  48. Osanaiye O, Alfa AS, Hancke GP (2018) A statistical approach to detect jamming attacks in wireless sensor networks. Sensors 18(6):1691. https://doi.org/10.3390/s18061691

    Article  Google Scholar 

  49. Panyim K, Hayajneh T, Krishnamurthy P, Tipper D (2009) On limited-range strategic/random jamming attacks in wireless ad hoc networks. In: Proceedings - conference on local computer networks, LCN, pp 922–929. https://doi.org/10.1109/LCN.2009.5355041

  50. Pelechrinis K, Iliofotou M, Krishnamurthy SV (2010) Denial of service attacks in wireless networks: The case of jammers. IEEE Commun Surv Tutor 13(2):245–257

    Article  Google Scholar 

  51. Cortés-Leal A, Del-Valle-Soto C, Cardenas C, Valdivia LJ, Del Puerto-Flores JA (2022) “Performance metric analysis for a jamming detection mechanism under collaborative and cooperative schemes in industrial wireless sensor networks. Sensors 22(1):178. https://doi.org/10.3390/s22010178

    Article  Google Scholar 

  52. Alnifie G, Simon R (2010) MULEPRO: a multi-channel response to jamming attacks in wireless sensor networks. Wirel Commun Mob Comput 10(5):704–721. https://doi.org/10.1002/WCM.734

    Article  Google Scholar 

  53. Muraleedharan R, Osadciw LA (2006) Jamming attack detection and countermeasures in wireless sensor network using ant system. Wirel Sens Process 6248(12):62480. https://doi.org/10.1117/12.666330

    Article  Google Scholar 

  54. Lazos L, Liu S, Krunz M (2009) Mitigating control-channel jamming attacks in multi-channel ad hoc networks. In: Proceedings of the 2nd ACM conference on wireless network security, WiSec’09, pp 169–180. https://doi.org/10.1145/1514274.1514299

  55. Broustis I, Pelechrinis K, Syrivelis D, Krishnamurthy SV, Tassiulas L (2009) FIJI: Fighting implicit jamming in 802.11 WLANs. In: Lecture notes of the institute for computer sciences, social-informatics and telecommunications engineering, vol 19 LNICST, pp 21–40. https://doi.org/10.1007/978-3-642-05284-2_2

  56. Bayraktaroglu E, King C, Liu X, Noubir G, Rajaraman R, Thapa B (2008) On the Performance of IEEE 802.11 under Jamming. Mobile Netw Appl. https://doi.org/10.1109/INFOCOM.2008.183

    Article  Google Scholar 

  57. Bellardo J, Savage S (2003) 802.11 {Denial-of-Service} attacks: real vulnerabilities and practical solutions. In: 12th USENIX security symposium (USENIX Security 03)

  58. Tague P, Slater D, Poovendran R, Noubir G (2008) Linear programming models for jamming attacks on network traffic flows. In: 2008 6th international symposium on modeling and optimization in mobile, Ad Hoc, and wireless networks and workshops. IEEE, pp 207–216. https://doi.org/10.1109/WIOPT.2008.4586066

  59. Li M, Koutsopoulos I, Poovendran R (2007) Optimal jamming attacks and network defense policies in wireless sensor networks. In: IEEE INFOCOM 2007-26th IEEE international conference on computer communications. IEEE, pp 1307–1315

  60. Commander CW, Pardalos PM, Ryabchenko V, Shylo O, Uryasev S, Zrazhevsky G (2008) Jamming communication networks under complete uncertainty. Optim Lett 2(1):53–70. https://doi.org/10.1007/S11590-006-0043-0

    Article  MathSciNet  Google Scholar 

  61. Panyim K, Hayajneh T, Krishnamurthy P, Tipper D (2009) On limited-range strategic/random jamming attacks in wireless ad hoc networks. In: IEEE 34th conference on local computer networks. IEEE, pp 922–929

  62. Gencer C, Aydogan EK, Celik C (2008) A decision support system for locating VHF/UHF radio jammer systems on the terrain. Inf Sys Front 10(1):111–124. https://doi.org/10.1007/S10796-007-9046-3/METRICS

    Article  Google Scholar 

  63. Huang H, Ahmed N, Karthik P (2011) On a new type of denial of service attack in wireless networks: the distributed jammer network. IEEE Trans Wirel Commun 10(7):2316–2324

    Article  Google Scholar 

  64. Liu H, Liu Z, Chen Y, Xu W (2011) Determining the position of a jammer using a virtual-force iterative approach. Wirel Netw 17(2):531–547. https://doi.org/10.1007/S11276-010-0295-6

    Article  Google Scholar 

  65. Sun Y, Wang X (2009) Jammer localization in wireless sensor networks. In: 2009 5th international conference on wireless communications, networking and mobile computing, pp 1-4. IEEE.https://doi.org/10.1109/WICOM.2009.5302614

  66. Pelechrinis K, Koutsopoulos I, Broustis I, Krishnamurthy SV (2009) Lightweight jammer localization in wireless networks: system design and implementation. In: GLOBECOM—IEEE global telecommunications conference. https://doi.org/10.1109/GLOCOM.2009.5425405

  67. Liu Z, Liu H, Xu W, Chen Y (2011) Exploiting jamming-caused neighbor changes for jammer localization. IEEE Trans Parallel Distrib Syst 23(3):547–555

    Article  Google Scholar 

  68. Wood AD, Stankovic JA, Son SH (2003) JAM: a jammed-area mapping service for sensor networks. In: Proceedings - real-time systems symposium, pp 286–297. https://doi.org/10.1109/REAL.2003.1253275

  69. Jain SK, Garg K (2009) A hybrid model of defense techniques against base station jamming attack in wireless sensor networks. In: 2009 first international conference on computational intelligence, communication systems and networks

  70. Xu W, Wood T, Trappe W, Zhang Y (2004) Channel surfing and spatial retreats: defenses against wireless denial of service. In: Proceedings of the 3rd ACM workshop on wireless security, pp 80–89. https://doi.org/10.1145/1023646.1023661

  71. Misra S, Singh R, Rohith Mohan SV (2010) Information warfare-worthy jamming attack detection mechanism for wireless sensor networks using a fuzzy inference system. Sensors 10:3444–3479

    Article  Google Scholar 

  72. Thamilarasu G, Sridhar R (2009) Game theoretic modeling of jamming attacks in Ad hoc networks. In: Proceedings - international conference on computer communications and networks, ICCCN. https://doi.org/10.1109/ICCCN.2009.5235211

  73. Khattab S, Mosse D, Melhem R (2008). Jamming mitigation in multi-radio wireless networks: reactive or proactive? In: Proceedings of the 4th international conference on Security and privacy in communication networks, pp 1–10

  74. Navda V, Bohra A, Ganguly S, Rubenstein D (2007) Using channel hopping to increase 802.11 resilience to jamming attacks. In: Proceedings—IEEE INFOCOM, pp 2526–2530. https://doi.org/10.1109/INFCOM.2007.314

  75. Gummadi R, Wetherall D, Greenstein B, Seshan S (2007) Understanding and mitigating the impact of RF interference on 802.11 networks. ACM SIGCOMM Comput Commun Rev 37(4):385–396. https://doi.org/10.1145/1282427.1282424

    Article  Google Scholar 

  76. Kerkez B, Watteyne T, Magliocco M, Glaser S, Pister K (2012) Feasibility analysis of controller design for adaptive channel hopping. In: Proceedings of the fourth international icst conference on performance evaluation methodologies and tools. https://doi.org/10.4108/ICST.VALUETOOLS2009.7934

  77. Wang H, Zhang L, Li T, Tugnait J (2011) Spectrally efficient jamming mitigation based on code-controlled frequency hopping. IEEE Trans Wirel Commun 10:728–732

    Article  Google Scholar 

  78. Yoon SU, Murawski R, Ekici E, Park S, Mir ZH (2010) Adaptive channel hopping for interference robust wireless sensor networks. In: 2010 IEEE international conference on communications. IEEE, pp 1–5

  79. Pelechrinis K, Koufogiannakis C, Krishnamurthy SV (2009) Gaming the jammer: Is frequency hopping effective? In: 2009 7th international symposium on modeling and optimization in mobile, ad hoc, and wireless networks

  80. Khattab S, Mossé D, Melhem R (2008) Modeling of the channel-hopping anti-jamming defense in multi-radio wireless networks. In: Proceedings of the 5th annual international conference on mobile and ubiquitous systems: computing, networking, and services. https://doi.org/10.4108/ICST.MOBIQUITOUS2008.3604

  81. Strasser M, Danev B, Čapkun S (2010) Detection of reactive jamming in sensor networks. ACM Trans Sens Netw 7(2):1–29. https://doi.org/10.1145/1824766.1824772

    Article  Google Scholar 

  82. Chiang JT, Hu YC (2007) Cross-layer jamming detection and mitigation in wireless broadcast networks. In: Proceedings of the annual international conference on mobile computing and networking, MOBICOM, pp 346–349. https://doi.org/10.1145/1287853.1287901

  83. IEEE Staff (2017). In: 2007 international conference on computer, communications and electronics (Comptelix). IEEE

  84. Ilavarasan S (2018) A survey on jamming attacks in wireless sensor networks. Int J Innov Eng Sci 3(7):1–10.

  85. Chen Y, Niu Y, Chen C, Zhou Q, Xiang P (2022) A distributed anti-jamming algorithm based on actor–critic countering intelligent malicious jamming for WSN. Sensors 22(21):8159. https://doi.org/10.3390/s22218159

    Article  Google Scholar 

  86. Parras J, Hüttenrauch M, Zazo S, Neumann G (2021) Deep reinforcement learning for attacking wireless sensor networks. Sensors 21(12):4060. https://doi.org/10.3390/s21124060

    Article  Google Scholar 

  87. Duo B, Wu Q, Yuan X, Zhang R (2020) Anti-jamming 3D trajectory design for UAV-enabled wireless sensor networks under probabilistic LoS channel. IEEE Trans Veh Technol 69(12):16288–16293. https://doi.org/10.1109/TVT.2020.3040334

    Article  Google Scholar 

  88. Hymlin Rose SG, Jayasree T (2019) Detection of jamming attack using timestamp for WSN. Ad Hoc Netw 91:101874. https://doi.org/10.1016/j.adhoc.2019.101874

    Article  Google Scholar 

  89. Al-Shai NFA, Hassanpour R (2019) Active defense strategy against jamming attack in wireless sensor networks. Int J Comput Netw Inf Sec 11(11):1–13. https://doi.org/10.5815/ijcnis.2019.11.01

    Article  Google Scholar 

  90. Meenalochani M, Sudha S (2019) Jammed node detection and routing in a multihop wireless sensor network using hybrid techniques. Wirel Pers Commun 104(2):663–675. https://doi.org/10.1007/s11277-018-6042-5

    Article  Google Scholar 

  91. Bhavathankar P, Chatterjee S, Misra S (2018) Link-quality aware path selection in the presence of proactive jamming in fallible wireless sensor networks. IEEE Trans Commun 66(4):1689–1704. https://doi.org/10.1109/TCOMM.2017.2736550

    Article  Google Scholar 

  92. Ganeshkumar P, Vijayakumar KP, Anandaraj M (2016) A novel jammer detection framework for cluster-based wireless sensor networks. Eurasip J Wirel Commun Netw 2016(1):1–25. https://doi.org/10.1186/s13638-016-0528-1

    Article  Google Scholar 

  93. Çakiroǧlu M, Öozcerit AT (2011) Design and evaluation of a query-based jamming detection algorithm for wireless sensor networks. Turk J Electr Eng Comput Sci 19(1):1–19. https://doi.org/10.3906/elk-0912-334

    Article  Google Scholar 

  94. Misra S, Singh R, Rohith Mohan SV (2010) Information warfare-worthy jamming attack detection mechanism for wireless sensor networks using a fuzzy inference system. Sensors 10(4):3444–3479. https://doi.org/10.3390/s100403444

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zainab Shaker Matar Al-Husseini.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Husseini, Z.S.M., Chaiel, H.K., Meddeb, A. et al. A detailed review of wireless sensor network, jammer, the types, location, detection and countermeasures of jammers. SOCA (2024). https://doi.org/10.1007/s11761-024-00396-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11761-024-00396-w

Keywords