Abstract
Based on the first-principles calculations of density functional theory, co-adsorption models of C or CO with Cl2 on rutile TiO2 (100) surface were established. The adsorption structures and electronic properties during chlorination process were predicted. Then, the adsorption energy, charge density, electron density difference and density of state of the adsorption structures were calculated and analyzed. The stabilities of the adsorption structures and the charge distributions between atoms were studied. It was found that both C and CO could promote the adsorption reactions of Cl2 on TiO2 (100) surface, and C was more favorable to the adsorption process. The results show that the adsorption process of Cl2 on TiO2(100) surface was physisorption, and the co-adsorption processes of C or CO with Cl2 on TiO2(100) surface were chemisorptions.
摘要
基于密度泛函理论的第一性原理计算方法, 构建 C 和 CO 分别与 Cl2 在金红石 TiO2 (100)面共吸附模型, 预测了氯化过程中的吸附结构及其电荷属性。 之后, 对吸附结构的吸附能、 电荷密度、 差分电荷密度和态密度等进行计算分析, 研究了吸附结构的稳定性及原子间的电荷分布。 发现 C 和 CO 均能促使 Cl2 在 TiO2(100)表面发生吸附反应, 且 C 更有利于促进吸附反应的发生。 结果表明: Cl2 分子单独在 TiO2(100)表面吸附的过程为物理吸附, C 和 CO 分别与 Cl2 同时在 TiO2(100)表面吸附的过程均为化学吸附。
Similar content being viewed by others
References
DAI Wen-wu, ZHAO Zong-yan. Structural and electronic properties of low-index stoichiometric BiOI surfaces [J]. Materials Chemistry and Physics, 2017, 193: 164–176. DOI: https://doi.org/10.1016/j.matchemphys.2017.02.017.
ULRIKE D. The surface science of titanium dioxide [J]. Surface Science Reports, 2003, 48: 53–229. DOI: https://doi.org/10.1016/S0167-5729(02)00100-0.
WANG Yu-ming, LIU Rui-feng, ZHOU Rong-hui, SHAO Bao-shun, WEI Qing-song, YUAN Zhang-fu, XU Chong. Thermodynamics on the reaction of carbochlorination of titania for getting titanium tetrachloride [J]. Computers and Applied Chemistry, 2006, 23: 263–266. DOI: https://doi.org/10.1016/S1003-6326(06)60040-X.
ADIPURI A, ZHANG Guang-qing, OSTROVSKI O. Chlorination of titanium oxycarbide produced by carbothermal reduction of rutile [J]. Metallurgical and Materials Transactions B, 2008, 39: 23–34. DOI: https://doi.org/10.1007/s11663-007-9117-3.
SHON H, VIGNESWARAN S, KIM I, CHO J, KIM J. Preparation of titanium dioxide (TiO2) from sludge produced by titanium tetrachloride (TiCl4) flocculation of wastewater [J]. Environmental Science and Technology, 2007, 41: 1372–1377. DOI: https://doi.org/10.1021/es062062g.
EL-SADEK M H, FOUAD O A, MORSI M B, EL-BARAWY K. Controlling conditions of fluidized bed chlorination of upgraded titania slag [J]. Transactions of the Indian Institute of Metals, 2019, 72: 423–427, 2018. DOI: https://doi.org/10.1007/s12666-018-1493-7.
XIONG Shao-feng, YUAN Zhang-fu, XU Cong, XI Liang. Composition of off-gas produced by combined fluidized bed chlorination for preparation of TiCLi [J]. Transactions of Nonferrous Metals Society of China, 2010, 20(1): 128–134. DOI: https://doi.org/10.1016/S1003-6326(09)60109-6.
ZHONG Hong, ER De-quan, WEN Liang-ying. Theoretical study on influence of CaO and MgO on the reduction of FeO by CO [J]. Appllied Surface Science, 2017, 399: 630–637. DOI: https://doi.org/10.1016/j.apsusc.2016.12.123.
ZHONG Hong, WEN Liang-ying, LI Jian-long, XU Jian, HU Mei-long, YANG Zhong-qing. The adsorption behaviors of CO and H2 on FeO surface: A density functional theory study [J]. Powder Technology, 2016, 303: 100–108. DOI: https://doi.org/10.1016/j.powtec.2016.09.017.
ZHONG Hong, WEN Liang-ying, ZOU Cong, ZHANG Sheng-fu, BAI Chen-guang. Density functional theory study on the carbon-adhering reaction on Fe3O4(111) surface [J]. Metallurgical and Materials Transactions B, 2015, 46: 2288–2295. DOI: https://doi.org/10.1007/s11663-015-0379-x.
INDERWILDI O, KRAFT M. Adsorption, diffusion and desorption of chlorine on and from rutile TiO2(110): A theoretical investigation [J]. Chemphyschem, 2007, 8: 444–451. DOI: https://doi.org/10.1002/cphc.200600653.
HEBENSTREIT E, HEBENSTREIT W, GEISLER H, VENTRICE C, HITE D, SPRUNGER P, DIEBOLD U. The adsorption of chlorine on TiO2(110) studied with scanning tunneling microscopy and photoemission spectroscopy [J]. Surface Science, 2002, 505: 336–348. DOI: https://doi.org/10.1016/S0039-6028(02)01385-7.
HIEHATA K, SASAHARA A, ONISHI H. Kelvin probe force microscope observation of chlorine-adsorbed TiO2(110) surfaces [J]. Japanese Journal of Applied Physics, 2008, 47: 6149–6152. DOI: https://doi.org/10.1143/JJAP.47.6149.
BATZILL M, HEBENSTREIT E, HEBENSTREIT W, DIEBOLD U. Influence of subsurface, charged impurities on the adsorption of chlorine at TiO2(110) [J]. Chemical Physics Letters, 2003, 367: 319–323. DOI: https://doi.org/10.1016/S0009-2614(02)01635-4.
RAMAMOORTHY M, VANDERBILT D. First-principles calculations of the energetics of stoichiometric TiO2 surfaces [J]. Physical Review B, 1994, 23(49): 722–727. DOI: https://doi.org/10.1103/PhysRevB.49.16721.
INDERWILDI O, KRAFT M. Adsorption, diffusion and desorption of chlorine on and from rutile TiO2{110}: A theoretical investigation [J]. ChemPhysChem, 2007, 8: 444–451. DOI: https://doi.org/10.1002/cphc.200600653.
HEINE A, ISABELA C, STUDT F, ABILD F, BLIGARD T, ROSSMESIL J. Electrochemical chlorine evolution at rutile oxide (110) surfaces [J]. Physical Chemistry Chemical Physics, 2010, 12: 283–290. DOI: https://doi.org/10.1039/b917459a.
SEZGIN A, MEHMET. Stability and superconductivity properties of metal substituted aluminum diborides (M0.5Al0.5B2) [J]. Computational Materials Science, 2018, 154: 234–242. DOI: https://doi.org/10.1016/j.commatsci.2018.08.005.
TUTUIANU M, INDERWILDI O R, BESSLER W G, WARNATZ J. Competitive adsorption of NO, NO2, CO2 and H2O on BaO(100): A quantum chemical study [J]. Journal of Physical Chemistry B, 2006, 110: 17484–17492. DOI: https://doi.org/10.1021/jp055268x.
MA C G, KRASNENKO V, BRIK M G. First-principles calculations of different (001) surface terminations of three cubic perovskites CsCaBr3, CsGeBr3, and CsSnBr3 [J]. Journal of Physics and Chemistry of Solids, 2018, 115: 289–299. DOI: https://doi.org/10.1016/j.jpcs.2017.12.052.
CHEN Hao, LI Xue-chao, WAN Run-dong, KAO WS, LEI Ying. A DFT study of the electronic structures and optical properties of (Cr, C) co-doped rutile TiO2 [J]. Chemical Physics, 2018, 501: 60–67. DOI: https://doi.org/10.1016/j.chemphys.2017.11.021.
JIANG Zhao, GUO Shu-yi, FANG Tao. Theoretical investigation on the dehydrogenation mechanism of CH3OH on Cu(100) surface [J]. Journal of Alloys and Compounds, 2017, 698: 617–625. DOI: https://doi.org/10.1016/j.jallcom.2016.12.220.
PAYNE M C, TETER M P, ALLAN D C, ARIAS T A, JOANNOPOULOS J D. Iterative minimization techniques for ab initio total-energy calculations: Molecular dynamics and conjugate gradients [J]. Reviews of Modern Physics, 1992, 64: 1045–1097. DOI: https://doi.org/10.1103/RevModPhys.64.1045.
BERGERMAYER W, SCHWEIGER H, WIMMER E. Ab initio thermodynamics of oxide surfaces: O2 on Fe2O3(0001) [J]. Physical Review B, 2004, 69: 1324–1332. DOI: https://doi.org/10.1103/PhysRevB.69.195409.
DAI Yue-hua, GONG Shan-shan, ZHONG Zhi-sheng, GAO Feng-yu, WANG Fei-fei, DING Chen, YANG Jin, YANG Fei. Effect of graphene/TiO2 (001) interface on threshold voltage and nonlinearity [J]. Nano, 2018, 13: 23069–4. DOI: https://doi.org/10.1142/S1793292018300049.
CHEN Hao, LI Xue-chao, WAN Run-dong. Theoretical studies on the electronic structure and optical absorption property of (Ni, C) co-doped anatase TiO2 [J]. Computational Condensed Matter, 2017, 13: 16–28. DOI: https://doi.org/10.1016/j.cocom.2017.08.005.
FAN Ya-ming, WENG Qi-yu, ZHUO Yu-qun, DONG Song-tao, HU Peng-bo, LI Duan-le. Theoretical study of As2O3 adsorption mechanisms on CaO surface [J]. Materials, 2019, 12: 677–690. DOI:https://doi.org/10.3390/ma12040677.
LIU Shuai, TANG Cheng-huang, ZHAN Yong-zhong. Theoretical prediction of transition metal alloying effects on the lightweight TiAl intermetallic [J]. Metallurgical and Materials Transactions A, 2016, 33: 1451–1460. DOI:https://doi.org/10.1007/s11661-015-3321-6.
JIN Shang-xiao, LIU Na, ZHANG Shuai, LI De-jun. The simulation of interface structure, energy and electronic properties of TaN/ReB2 multilayers using first-principles [J]. Surface and Coatings Technology, 2017, 326: 417–423. DOI: https://doi.org/10.1016/j.surfcoat.2016.11.068.
PERRON H, DOMAIN C, ROQUES J, DROT R, SIMONI E, CATALETTE H. Optimisation of accurate rutile TiO2 (110), (100), (101) and (001) surface models from periodic DFT calculations [J]. Theoretical Chemistry Accounts: Theory, Computation, and Modeling, 2007, 117: 565–574. DOI: https://doi.org/10.1007/s00214-006-0189-y.
Author information
Authors and Affiliations
Contributions
The overarching research goals were developed by YANG Fan and WEN Liang-ying. PENG Qin and ZHAO Yan sorted out relevant data in the early stage. The initial draft of the manuscript was written by YANG Fan. WEN Liang-ying, XU Jian, HUMei-long, ZHANG Sheng-fu, and YANG Zhong-qing supervised the process. YANG Fan and WEN Liang-ying replied to reviewers’ comments and revised the final version.
Corresponding author
Additional information
Conflict of interest
All authors declare that they have no conflict of interest.
Foundation item
Projects(51674052, 51974046) supported by the National Natural Science Foundation of China; Project(cstc2018jcyjAX0003) supported by the Chongqing Research Program of Basic Research and Frontier Technology, China
Rights and permissions
About this article
Cite this article
Yang, F., Wen, Ly., Peng, Q. et al. Prediction of structural and electronic properties of Cl2 adsorbed on TiO2(100) surface with C or CO in fluidized chlorination process: A first-principles study. J. Cent. South Univ. 28, 29–38 (2021). https://doi.org/10.1007/s11771-021-4583-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11771-021-4583-3