Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Topological Analysis of Syntactic Structures

  • Published:
Mathematics in Computer Science Aims and scope Submit manuscript

Abstract

We use the persistent homology method of topological data analysis and dimensional analysis techniques to study data of syntactic structures of world languages. We analyze relations between syntactic parameters in terms of dimensionality, of hierarchical clustering structures, and of non-trivial loops. We show there are relations that hold across language families and additional relations that are family-specific. We then analyze the trees describing the merging structure of persistent connected components for languages in different language families and we show that they partly correlate to historical phylogenetic trees but with significant differences. We also show the existence of interesting non-trivial persistent first homology groups in various language families. We give examples where explicit generators for the persistent first homology can be identified, some of which appear to correspond to homoplasy phenomena, while others may have an explanation in terms of historical linguistics, corresponding to known cases of syntactic borrowing across different language subfamilies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40
Fig. 41
Fig. 42
Fig. 43
Fig. 44

Similar content being viewed by others

References

  1. Baker, M.: The Atoms of Language. Basic Books, New York (2001)

    Google Scholar 

  2. Barannikov, S.A.: The Framed Morse complex and its invariants. Adv. Soviet Math. 21, 93–115 (1994)

    MathSciNet  MATH  Google Scholar 

  3. Belkin, M., Niyogi, P.: Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput. 15(6), 1373–1396 (2003)

    Article  MATH  Google Scholar 

  4. Boissonnat, J.D., Chazal, F., Yvinec, M.: Geometric and Topological Inference. Cambridge University Press, Cambridge (2018)

    Book  MATH  Google Scholar 

  5. Bouckaert, R., Lemey, P., Dunn, M., Greenhill, S.J., Alekseyenko, A.V., Drummond, A.J., Gray, R.D., Suchard, M.A., Atkinson, Q.D.: Mapping the origins and expansion of the Indo-European language family. Science 337, 957–960 (2012)

    Article  Google Scholar 

  6. Bubenik, P., Scott, J.A.: Categorification of persistent homology. Discrete Comput. Geom. 51(3), 600–627 (2014). [arXiv:1205.3669]

    Article  MathSciNet  MATH  Google Scholar 

  7. Carlsson, G.: Topology and data. Bull. Am. Math. Soc. 46(2), 255–308 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ceolin, A., Guardiano, C., Irimia, M.A., Longobardi, G.: Formal syntax and deep history. Front. Psychol. 11, 2384 (2020)

    Article  Google Scholar 

  9. Chomsky, N.: Lectures on Government and Binding. Foris Publications, Dordrecht (1982)

    Google Scholar 

  10. Chomsky, N., Lasnik, H.: The theory of principles and parameters. In: Syntax: An International Handbook of Contemporary Research, pp. 506–569. de Gruyter (1993)

  11. Edelsbrunner, H., Harer, J.L.: Computational Topology. American Mathematical Society, Providence (2010)

    MATH  Google Scholar 

  12. Gakkhar, S., Marcolli, M.: Syntactic structures and the general Markov models. arXiv:2104.08462

  13. Genis, R.: Comparing verbal aspect in Slavic and Gothic. In: Language for its own sake: essays on language and literature offered to Harry Perridon. Amsterdam contributions to Scandinavian studies. No. 8, 59–80 (2012)

  14. Gliesche, J.D.: Gothic Syntax. Lecture notes http://users.clas.ufl.edu/drjdg/oe/pubs/gothicsyntax.pdf

  15. Guardiano, C., Michelioudakis, D., Ceolin, A., Irimia, M., Longobardi, G., Radkevich, N., Sitaridou, I., Silvestri, G.: South by Southeast. A syntactic approach to greek and romance microvariation. L’Italia Dialettale 77, 95–166 (2016)

  16. Ghrist, R.: Elementary Applied Topology. CreateSpace (2014)

  17. Holzer, G.: Germanische Lehnwörter im Urslavischen: Methodologisches zu ihrer Identifizierung. Croatica, Slavica, Indoeuropea. Wien: Österreichischen Akademie der Wissenschaften. Series: Wiener Slawistisches Jahrbuch, Ergänzungsband; VIII, pp. 59–67 (1990)

  18. Karimi, S., Piattelli-Palmarini, M. (Eds.): Special Issue on Parameters, Linguistic Analysis, Vol. 41, No. 3–4 (2017)

  19. Kashiwara, M., Schapira, P.: Persistent homology and microlocal sheaf theory. arXiv:1705.00955

  20. Kazakov, D., Cordoni, G., Algahtani, E., Ceolin, A., Irimia, M., Kim, S.S., Michelioudakis, D., Radkevich, N., Guardiano, C., Longobardi, G.: Learning Implicational Models of Universal Grammar Parameters. EVOLANG XII: 16–19 April 2018, Torun, Poland

  21. Longobardi, G.: Methods in parametric linguistics and cognitive history. Linguist. Var. Yearb. 3, 101–138 (2003)

    Article  Google Scholar 

  22. Longobardi, G.: Principles, parameters, and schemata. A constructivist UG. Linguist. Anal. 41(3–4), 517–557 (2017)

    Google Scholar 

  23. Longobardi, G., Ceolin, A.: The mathematics of parametric comparison, talk at workshop “Phylogenetic Linguistics and Linguistic Theory.” University of York, York Centre for Linguistic History and Diversity (2018)

  24. Longobardi, G., Guardiano, C.: Evidence for syntax as a signal of historical relatedness. Lingua 119, 1679–1706 (2009)

    Article  Google Scholar 

  25. Longobardi, G., Guardiano, C., Silvestri, G., Boattini, A., Ceolin, A.: Towards a syntactic phylogeny of modern Indo-European languages. J. Hist. Linguist. 3(1), 122–152 (2013)

    Article  Google Scholar 

  26. Longobardi, G., Buch, A., Ceolin, A., Ecay, A., Guardiano, C., Irimia, M., Michelioudakis, D., Radkevich, N., Jaeger, G.: Correlated evolution or not? Phylogenetic linguistics with syntactic, cognacy, and phonetic data. In: Roberts, S.G. et al. (eds.) The Evolution of Language: Proceedings of the 11th International Conference (EVOLANGX11). http://evolang.org/neworleans/papers/162.html (2011)

  27. Manin, Yu, I., Marcolli, M.: Nori diagrams and persistent homology. Math. Comput. Sci 14(1), 77–102 (2020)

  28. Marcantonio, A.: The Uralic Language Family: Facts, Myths and Statistics, Publications of the Philological Society, vol. 35. Blackwell, London (2002)

    Google Scholar 

  29. Marcolli, M.: Syntactic parameters and a coding theory perspective on entropy and complexity of language families. Entropy 18, 110 (2016)

    Article  MathSciNet  Google Scholar 

  30. Martynov, V.V.: Iazyk v prostranstve i vremeni. Nauka (1983)

  31. Militarev, A.: Genealogical classification of Afro-Asiatic languages according to the latest data, talk at the conference on the 70th anniversary of V.M. Illich-Svitych, Moscow (2004)

  32. Mišeska-Tomić, O.: Balkan Sprachbund. Morpho-syntactic Features. Springer, Dordrecht (2006)

    Google Scholar 

  33. Ortegaray, A., Berwick, R.C., Marcolli, M.: Heat Kernel analysis of syntactic structures. Math. Comput. Sci 15(4), 643–660 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  34. Pachter, L., Sturmfels, B.: Algebraic Statistics for Computational Biology. Cambridge University Press, Cambridge (2005)

    Book  MATH  Google Scholar 

  35. Park, J.J., Boettcher, R., Zhao, A., Mun, A., Yuh, K., Kumar, V., Marcolli, M.: Prevalence and recoverability of syntactic parameters in sparse distributed memories. In: Geometric Science of Information. Third International Conference GSI 2017, pp. 265–272, Lecture Notes in Computer Science, vol. 10589. Springer (2017)

  36. Perelysvaig, A., Lewis, M.W.: The Indo-European Controversy: Facts and Fallacies in Historical Linguistics. Cambridge University Press, Cambridge (2015)

    Book  Google Scholar 

  37. Port, A., Gheorghita, I., Guth, D., Clark, J.M., Liang, C., Dasu, S., Marcolli, M.: Persistent topology of syntax. Math. Comput. Sci. 12(1), 33–50 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  38. Ringe, D., Warnow, T., Taylor, A.: Indo-European and computational cladistics. Trans. Philol. Soc. 100, 59–129 (2002)

    Article  Google Scholar 

  39. Shu, K., Ortegaray, A., Berwick, R.C., Marcolli, M.: Phylogenetics of Indo-European language families via an Phylogenetics of Indo-European language families via an algebro-geometric analysis of their syntactic structures. Math. Comput. Sci 15(4), 803–857 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  40. Shu, K., Marcolli, M.: Syntactic structures and code parameters. Math. Comput. Sci. 11(1), 79–90 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  41. Shu, K., Aziz, S., Huynh, V.L., Warrick, D., Marcolli, M.: Syntactic phylogenetic trees. In: Foundations of Mathematics and Physics One Century After Hilbert, pp. 417–441. Springer, Cham (2018)

  42. Sinor, D.: The problem of the Ural–Altaic relationship. In: The Uralic Languages: Description, History and Modern Influences. Brill, pp. 706–741 (1988)

  43. Siva, K., Tao, J., Marcolli, M.: Spin glass models of syntax and language evolution. Linguist. Anal. 41(3–4), 559–608 (2017)

    Google Scholar 

  44. Zomorodian, A.J.: Topology for computing. Cambridge University Press, Cambridge (2005)

    Book  MATH  Google Scholar 

  45. Perseus software package for persistent homology. http://www.sas.upenn.edu/~vnanda/perseus/

  46. Syntactic Structures of World Languages (SSWL Database). http://sswl.railsplayground.net/

  47. Terraling Database. http://test.terraling.com/

Download references

Acknowledgements

The third author was supported by NSF grants DMS-1707882 and DMS-2104330 and by NSERC Discovery Grant RGPIN-2018-04937 and Accelerator Supplement Grant RGPAS-2018-522593.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matilde Marcolli.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Port, A., Karidi, T. & Marcolli, M. Topological Analysis of Syntactic Structures. Math.Comput.Sci. 16, 2 (2022). https://doi.org/10.1007/s11786-021-00520-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11786-021-00520-5

Keywords

Mathematics Subject Classification