Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

A Comprehensive Review of Computational Dehazing Techniques

  • Original Paper
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

The visibility of outdoor images is greatly degraded due to the presence of fog, haze, smog etc. The poor visibility may cause the failure of computer vision applications such as intelligent transportation systems, surveillance systems, object tracking systems, etc. To resolve this problem, many image dehazing techniques have been developed. These techniques play an important role in improving performance of various computer vision applications. Due to this, the researchers are attracted toward the dehazing techniques. This paper carries out a comprehensive review of dehazing techniques to show that these could be effectively applied in real-life practice. On the other hand, it encourages the researchers to use these techniques for removal of haze from hazy images. The seven main classes of dehazing technique, such as depth estimation, wavelet, enhancement, filtering, supervised learning, fusion, meta-heuristic techniques and variational model are addressed. In addition, this paper focuses on mathematical models of dehazing techniques along with their implementation aspects. Finally, some considerations about challenges and future scope in dehazing techniques are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Achanta R, Hemami S, Estrada F, Susstrunk S (2009) Frequency-tuned salient region detection. In: IEEE conference on computer vision and pattern recognition, 2009. CVPR 2009. IEEE, pp 1597–1604

  2. Amintoosi M, Fathy M, Mozayani N (2011) Video enhancement through image registration based on structural similarity. Imaging Sci J 59(4):238–250

    Article  Google Scholar 

  3. Ancuti CO, Ancuti C (2013) Single image dehazing by multi-scale fusion. IEEE Trans Image Process 22(8):3271–3282

    Article  Google Scholar 

  4. Ancuti CO, Ancuti C, Bekaert P (2010) Effective single image dehazing by fusion. In: 17th IEEE international conference on image processing (ICIP), 2010. IEEE, pp 3541–3544

  5. Ansari A, Danyali H, Helfroush MS (2017) Hs remote sensing image restoration using fusion with ms images by em algorithm. IET Signal Process 11(1):95–103

    Article  Google Scholar 

  6. Bajić B, Lindblad J, Sladoje N (2016) Restoration of images degraded by signal-dependent noise based on energy minimization: an empirical study. J Electron Imaging 25(4):043,020

    Article  Google Scholar 

  7. Bashir Z, Raja G, Ullah MO (2016) A video enhancement algorithm for low-lighting environment using field programmable gate array (fpga) architecture. NED Univ J Res 13(4):81

    Google Scholar 

  8. Beck A, Henneberger J, Schöpfer S, Fugal J, Lohmann U (2017) Hologondel: in situ cloud observations on a cable car in the swiss alps using a holographic imager. Atmos Meas Tech 10(2):459

    Article  Google Scholar 

  9. Berman D, Avidan S et al (2016) Non-local image dehazing. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1674–1682

  10. Buchsbaum G (1980) A spatial processor model for object colour perception. J Frankl Inst 310(1):1–26

    Article  Google Scholar 

  11. Burt P, Adelson E (1983) The laplacian pyramid as a compact image code. IEEE Trans Commun 31(4):532–540

    Article  Google Scholar 

  12. Cai B, Xu X, Jia K, Qing C, Tao D (2016) Dehazenet: an end-to-end system for single image haze removal. IEEE Trans Image Process 25(11):5187–5198

    Article  MathSciNet  MATH  Google Scholar 

  13. Caraffa L, Tarel JP (2012) Stereo reconstruction and contrast restoration in daytime fog. In: Asian conference on computer vision. Springer, pp 13–25

  14. Carlevaris-Bianco N, Mohan A, Eustice RM (2010) Initial results in underwater single image dehazing. In: OCEANS 2010, IEEE, pp 1–8

  15. Celik T, Li HC (2016) Residual spatial entropy-based image contrast enhancement and gradient-based relative contrast measurement. J Mod Opt 63(16):1600–1617

    Article  MathSciNet  MATH  Google Scholar 

  16. Chao L, Wang M (2010) Removal of water scattering. In: 2nd international conference on computer engineering and technology (ICCET), 2010. IEEE, vol 2, pp V2–35

  17. Chen BH, Huang SC (2016) Edge collapse-based dehazing algorithm for visibility restoration in real scenes. J Disp Technol 12(9):964–970

    Article  Google Scholar 

  18. Chen BH, Huang SC, Ye JH (2015) Hazy image restoration by bi-histogram modification. ACM Tran Intell Syst Technol TIST 6(4):50

    Google Scholar 

  19. Chen BH, Huang SC, Cheng FC (2016a) A high-efficiency and high-speed gain intervention refinement filter for haze removal. J Disp Technol 12(7):753–759

    Article  Google Scholar 

  20. Chen C, Do MN, Wang J (2016) Robust image and video dehazing with visual artifact suppression via gradient residual minimization. In: European conference on computer vision. Springer, pp 576–591

  21. Cheng FC, Cheng CC, Lin PH, Huang SC (2015) A hierarchical airlight estimation method for image fog removal. Eng Appl Artif Intell 43:27–34

    Article  Google Scholar 

  22. Chiang JY, Chen YC (2012) Underwater image enhancement by wavelength compensation and dehazing. IEEE Trans Image Process 21(4):1756–1769

    Article  MathSciNet  MATH  Google Scholar 

  23. Choi LK, You J, Bovik AC (2015) Referenceless prediction of perceptual fog density and perceptual image defogging. IEEE Trans Image Process 24(11):3888–3901

    Article  MathSciNet  MATH  Google Scholar 

  24. Chuangbai X, Hongyu Z, Jing Y, Pu Y (2015) Traffic image defogging method based on wls. Infrared Laser Eng 3:052

    Google Scholar 

  25. Conca A, Ridella C, Sapori E (2016) A risk assessment for road transportation of dangerous goods: a routing solution. Transp Res Proc 14:2890–2899

    Article  Google Scholar 

  26. Cong-Hua X, Wei-Wei Q, Xiu-Xiang Z, Feng Z (2016) Single image dehazing algorithm using wavelet decomposition and fast kernel regression model. J Electron Imaging 25(4):043,003

    Article  Google Scholar 

  27. Crebolder JM, Sloan RB (2004) Determining the effects of eyewear fogging on visual task performance. Appl Ergon 35(4):371–381

    Article  Google Scholar 

  28. Cui T, Tian J, Wang E, Tang Y (2016) Single image dehazing by latent region-segmentation based transmission estimation and weighted l 1-norm regularisation. IET Image Process 11(2):145–154

    Article  Google Scholar 

  29. Ding M, Tong R (2013) Efficient dark channel based image dehazing using quadtrees. Sci China Inf Sci 56(9):1–9

    Article  Google Scholar 

  30. Ding M, Wei L (2015) Single-image haze removal using the mean vector l2-norm of rgb image sample window. Optik Int J Light Electron Opt 126(23):3522–3528

    Article  Google Scholar 

  31. Ding W, Li Y, Liu H (2016) Efficient vanishing point detection method in unstructured road environments based on dark channel prior. IET Comput Vis 10(8):852–860

    Article  Google Scholar 

  32. Dou Z, Han Y, Sheng W, Ma X (2015) Image dehaze using alternating Laplacian and Beltrami regularizations. J Electron Imaging 24(2):023,004

    Article  Google Scholar 

  33. Drews P, Nascimento E, Moraes F, Botelho S, Campos M (2013) Transmission estimation in underwater single images. In: Proceedings of the IEEE international conference on computer vision workshops, pp 825–830

  34. Du Y, Guindon B, Cihlar J (2002) Haze detection and removal in high resolution satellite image with wavelet analysis. IEEE Trans Geosci Remote Sens 40(1):210–217

    Article  Google Scholar 

  35. Duda RO, Hart PE, Stork DG (2012) Pattern classification. Wiley, Hoboken

    MATH  Google Scholar 

  36. El Khoury J, Le Moan S, Thomas JB, Mansouri A (2017) Color and sharpness assessment of single image dehazing. Multimedia tools and applications, pp 1–22

  37. Emberton S, Chittka L, Cavallaro A (2018) Underwater image and video dehazing with pure haze region segmentation. Comput Vis Image Underst 168:145–156

    Article  Google Scholar 

  38. Fan X, Wang Y, Tang X, Gao R, Luo Z (2016) Two-layer Gaussian process regression with example selection for image dehazing. IEEE Trans Circ Syst Video Technol PP(99):1

    Google Scholar 

  39. Fang F, Li F, Yang X, Shen C, Zhang G (2010) Single image dehazing and denoising with variational method. In: 2010 international conference on image analysis and signal processing (IASP). IEEE, pp 219–222

  40. Fang K, Ke GY, Verma M (2017) A routing and scheduling approach to rail transportation of hazardous materials with demand due dates. Eur J Oper Res 261(1):154–168

    Article  MathSciNet  MATH  Google Scholar 

  41. Fang S, Shi Q, Cao Y (2013) Adaptive removal of real noise from a single image. J Electron Imaging 22(3):033,014

    Article  Google Scholar 

  42. Fattal R (2008) Single image dehazing. ACM TOG 27(3):72

    Article  Google Scholar 

  43. Fattal R (2014) Dehazing using color-lines. ACM TOG 34(1):13

    Article  Google Scholar 

  44. Fu X, Wang J, Zeng D, Huang Y, Ding X (2015a) Remote sensing image enhancement using regularized-histogram equalization and dct. IEEE Geosci Remote Sens Lett 12(11):2301–2305

    Article  Google Scholar 

  45. Fu Z, Yang Y, Shu C, Li Y, Wu H, Xu J (2015b) Improved single image dehazing using dark channel prior. J Syst Eng Electron 26(5):1070–1079

    Article  Google Scholar 

  46. Galdran A, Pardo D, Picón A, Alvarez-Gila A (2015a) Automatic red-channel underwater image restoration. J Vis Commun Image Represent 26:132–145

    Article  Google Scholar 

  47. Galdran A, Vazquez-Corral J, Pardo D, Bertalmío M (2015b) Enhanced variational image dehazing. SIAM J Imaging Sci 8(3):1519–1546

    Article  MathSciNet  MATH  Google Scholar 

  48. Galdran A, Vazquez-Corral J, Pardo D, Bertalmío M (2017) Fusion-based variational image dehazing. IEEE Signal Process Lett 24(2):151–155

    MATH  Google Scholar 

  49. Gao Y, Hu HM, Wang S, Li B (2014) A fast image dehazing algorithm based on negative correction. Signal Process 103:380–398

    Article  Google Scholar 

  50. Ge G, Wei Z, Zhao J (2015) Fast single-image dehazing using linear transformation. Optik Int J Light Electron Opt 126(21):3245–3252

    Article  Google Scholar 

  51. Ghani ASA, Isa NAM (2017) Automatic system for improving underwater image contrast and color through recursive adaptive histogram modification. Comput Electron Agric 141:181–195

    Article  Google Scholar 

  52. Gibson KB, Nguyen TQ (2013) An analysis of single image defogging methods using a color ellipsoid framework. EURASIP J Image Video Process 1:37

    Article  Google Scholar 

  53. Guan L (1995) Model-based neural evaluation and iterative gradient optimization in image restoration and statistical filtering. J Electron Imaging 4(4):407–413

    Article  MathSciNet  Google Scholar 

  54. Guo F, Peng H, Tang J (2016a) Genetic algorithm-based parameter selection approach to single image defogging. Inf Process Lett 116(10):595–602

    Article  Google Scholar 

  55. Guo F, Peng H, Tang J (2016) Genetic algorithm-based parameter selection approach to single image defogging. Inf Process Lett 116(10):595–602

    Article  Google Scholar 

  56. Hautière N, Tarel JP, Aubert D (2007) Towards fog-free in-vehicle vision systems through contrast restoration. In: IEEE conference on computer vision and pattern recognition, 2007. CVPR’07. IEEE, pp 1–8

  57. Hautiere N, Tarel JP, Aubert D, Dumont E (2011) Blind contrast enhancement assessment by gradient ratioing at visible edges. Image Anal Stereol 27(2):87–95

    Article  MathSciNet  MATH  Google Scholar 

  58. He K, Sun J, Tang X (2011) X.: single image haze removal using dark channel prior. IEEE Trans Pattern Anal Mach Intell 33(12):2341–2353

    Article  Google Scholar 

  59. He K, Sun J, Tang X (2011) Single image haze removal using dark channel prior. IEEE Trans Pattern Anal Mach Intell 33(12):2341–2353

    Article  Google Scholar 

  60. He R, Wang Z, Fan Y, Feng DD (2015) Combined constraint for single image dehazing. Electron Lett 51(22):1776–1778

    Article  Google Scholar 

  61. He S, Yang Q, Lau RW, Yang MH (2016) Fast weighted histograms for bilateral filtering and nearest neighbor searching. IEEE Trans Circ Syst Video Technol 26(5):891–902

    Article  Google Scholar 

  62. Huang SC, Chen BH, Cheng YJ (2014) An efficient visibility enhancement algorithm for road scenes captured by intelligent transportation systems. IEEE Trans Intell Transp Syst 15(5):2321–2332

    Article  Google Scholar 

  63. Hung CL, Yan RY, Wang HH (2016) Parallel image dehazing algorithm based on gpu using fuzzy system and hybird evolution algorithm. In: 2016 17th IEEE/ACIS international conference on software engineering, artificial intelligence, networking and parallel/distributed computing (SNPD). IEEE, pp 581–583

  64. Jiang B, Meng H, Ma X, Wang L, Zhou Y, Xu P, Jiang S, Meng X (2017) Nighttime image dehazing with modified models of color transfer and guided image filter. Multimedia tools and applications, pp 1–17

  65. Jiang G, Wong C, Lin S, Rahman M, Ren T, Kwok N, Shi H, Yu YH, Wu T (2015) Image contrast enhancement with brightness preservation using an optimal gamma correction and weighted sum approach. J Mod Opt 62(7):536–547

    Article  Google Scholar 

  66. Jiang W, Ji M, Huang X, Wang C, Yang Y, Li T, Wang J, Zhang Y (2016) An improved dehazing algorithm of aerial high-definition image. In: Selected papers of the photoelectronic technology committee conferences held November 2015, international society for optics and photonics, vol 9796, p 97962T

  67. Kawakami R, Zhao H, Tan RT, Ikeuchi K (2013) Camera spectral sensitivity and white balance estimation from sky images. Int J Comput Vis 105(3):187–204

    Article  MATH  Google Scholar 

  68. Kennedy JP, Wilson JM (2017) Liabilities and responsibilities: ocean transportation intermediaries (otis) and the distribution of counterfeit goods. Marit Econ Logist 19(1):182–187

    Article  Google Scholar 

  69. Khmag A, Al-Haddad S, Ramli AR, Kalantar B (2017) Single image dehazing using second-generation wavelet transforms and the mean vector l2-norm. The visual computer, pp 1–14

  70. Kim JH, Jang WD, Sim JY, Kim CS (2013) Optimized contrast enhancement for real-time image and video dehazing. J Vis Commun Image Represent 24(3):410–425

    Article  Google Scholar 

  71. Kopf J, Neubert B, Chen B, Cohen M, Cohen-Or D, Deussen O, Uyttendaele M, Lischinski D (2008) Deep photo: model-based photograph enhancement and viewing. ACM TOG 27:116

    Article  Google Scholar 

  72. Koschmieder H (1938) Luftlicht und sichtweite. Naturwissenschaften 26(32):521–528

    Article  Google Scholar 

  73. Kratz L, Nishino K (2009) Factorizing scene albedo and depth from a single foggy image. In: 2009 IEEE 12th international conference on computer vision. IEEE, pp 1701–1708

  74. Kumar R, Kaushik BK, Balasubramanian R (2017) Fpga implementation of image dehazing algorithm for real time applications. In: Applications of digital image processing XL, international society for optics and photonics, vol 10396, p 1039633

  75. Kumari A, Sahoo SK (2015) Fast single image and video deweathering using look-up-table approach. AEU Int J Electron Commun 69(12):1773–1782

    Article  Google Scholar 

  76. Kwok N, Shi H, Fang G, Ha Q, Yu YH, Wu T, Li H, Nguyen T (2015) Color image enhancement using correlated intensity and saturation adjustments. J Mod Opt 62(13):1037–1047

    Article  Google Scholar 

  77. Kwon O (2014) Single image dehazing based on hidden markov random field and expectation–maximisation. Electron Lett 50(20):1442–1444

    Article  Google Scholar 

  78. Lee D, Lim S (2016) Improved structural similarity metric for the visible quality measurement of images. J Electron Imaging 25(6):063,015

    Article  Google Scholar 

  79. Lee S, Yun S, Nam JH, Won CS, Jung SW (2016) A review on dark channel prior based image dehazing algorithms. EURASIP J Image Video Process 1:4

    Article  Google Scholar 

  80. Li C, Guo J (2015) Underwater image enhancement by dehazing and color correction. J Electron Imaging 24(3):033,023

    Article  Google Scholar 

  81. Li C, Guo J, Guo C, Cong R, Gong J (2017a) A hybrid method for underwater image correction. Pattern Recognit Lett 94:62–67

    Article  Google Scholar 

  82. Li CY, Guo JC, Cong RM, Pang YW, Wang B (2016a) Underwater image enhancement by dehazing with minimum information loss and histogram distribution prior. IEEE Trans Image Process 25(12):5664–5677

    Article  MathSciNet  MATH  Google Scholar 

  83. Li J, Zhang H, Yuan D, Sun M (2015a) Single image dehazing using the change of detail prior. Neurocomputing 156:1–11

    Article  Google Scholar 

  84. Li Y, Miao Q, Song J, Quan Y, Li W (2016b) Single image haze removal based on haze physical characteristics and adaptive sky region detection. Neurocomputing 182:221–234

    Article  Google Scholar 

  85. Li Y, Zhang Y, Xu X, He L, Serikawa S, Kim H (2017) Dust removal from high turbid underwater images using convolutional neural networks. Opt Laser Technol. https://doi.org/10.1016/j.optlastec.2017.09.017

    Article  Google Scholar 

  86. Li Z, Zheng J (2015) Edge-preserving decomposition-based single image haze removal. IEEE Trans Image Process 24(12):5432–5441

    Article  MathSciNet  MATH  Google Scholar 

  87. Li Z, Tan P, Tan RT, Zou D, Zhiying Zhou S, Cheong LF (2015b) Simultaneous video defogging and stereo reconstruction. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 4988–4997

  88. Li Z, Zheng J, Zhu Z, Yao W, Wu S (2015c) Weighted guided image filtering. IEEE Trans Image Process 24(1):120–129

    Article  MathSciNet  MATH  Google Scholar 

  89. Lian X, Pang Y, Yang A (2017) Learning intensity and detail mapping parameters for dehazing. Multimedia tools and applications, pp 1–26

  90. Liao B, Yin P, Xiao C (2018) Efficient image dehazing using boundary conditions and local contrast. Comput Graph 70:242–250

    Article  Google Scholar 

  91. Likhterov B, Kopeika NS (2004) Motion-blurred image restoration using modified inverse all-pole filters. J Electron Imaging 13(2):257–263

    Article  Google Scholar 

  92. Liu H, Yang J, Wu Z, Zhang Q (2015) Fast single image dehazing based on image fusion. J Electron Imaging 24(1):013,020

    Article  Google Scholar 

  93. Liu H, Huang D, Hou S, Pan X (2017) Nlarge size single image fast defogging and the real time video defogging fpga architecture. Neurocomputing 269:97–107

    Article  Google Scholar 

  94. Liu S, Rahman MA, Wong CY, Lin CF, Wu H, Kwok N et al (2017) Image de-hazing from the perspective of noise filtering. Comput Electr Eng 62:345–359

    Article  Google Scholar 

  95. Liu X, Zhang H, Ym Cheung, You X, Tang YY (2017b) Efficient single image dehazing and denoising: an efficient multi-scale correlated wavelet approach. Comput Vis Image Underst 162:23–33

    Article  Google Scholar 

  96. Long J, Shi Z, Tang W, Zhang C (2014) Single remote sensing image dehazing. IEEE Geosci Remote Sens Lett 11(1):59–63

    Article  Google Scholar 

  97. Lu H, Li Y, Nakashima S, Serikawa S (2016) Single image dehazing through improved atmospheric light estimation. Multimed Tools Appl 75(24):17,081–17,096

    Article  Google Scholar 

  98. Luan Z, Shang Y, Zhou X, Shao Z, Guo G, Liu X (2017) Fast single image dehazing based on a regression model. Neurocomputing 245:10–22

    Article  Google Scholar 

  99. Ma Z, Wen J, Zhang C, Liu Q, Yan D (2016) An effective fusion defogging approach for single sea fog image. Neurocomputing 173:1257–1267

    Article  Google Scholar 

  100. McCartney EJ (1976) Optics of the atmosphere: scattering by molecules and particles. Wiley, New York, p 421

    Google Scholar 

  101. Meng G, Wang Y, Duan J, Xiang S, Pan C (2013) Efficient image dehazing with boundary constraint and contextual regularization. In: Proceedings of the IEEE international conference on computer vision, pp 617–624

  102. Mi Z, Zhou H, Zheng Y, Wang M (2016) Single image dehazing via multi-scale gradient domain contrast enhancement. IET Image Process 10(3):206–214

    Article  Google Scholar 

  103. Narasimhan SG, Nayar SK (2000) Chromatic framework for vision in bad weather. In: Proceedings of IEEE conference on computer vision and pattern recognition, 2000. IEEE, vol 1, pp 598–605

  104. Narasimhan SG, Nayar SK (2002) Vision and the atmosphere. Int J Comput Vis 48(3):233–254

    Article  MATH  Google Scholar 

  105. Narasimhan SG, Nayar SK (2003a) Contrast restoration of weather degraded images. IEEE Trans Pattern Anal Mach Intell 25(6):713–724

    Article  Google Scholar 

  106. Narasimhan SG, Nayar SK (2003) Interactive (de) weathering of an image using physical models. In: IEEE workshop on color and photometric methods in computer vision, France, vol 6, p 1

  107. Nayar SK, Narasimhan SG (1999) Vision in bad weather. In: The proceedings of the seventh IEEE international conference on computer vision, 1999. IEEE, vol 2, pp 820–827

  108. Nishino K, Kratz L, Lombardi S (2012) Bayesian defogging. Int J Comput Vis 98(3):263–278

    Article  MathSciNet  Google Scholar 

  109. Nnolim UA (2017) Improved partial differential equation-based enhancement for underwater images using local–global contrast operators and fuzzy homomorphic processes. IET Image Process 11(11):1059–1067

    Article  Google Scholar 

  110. Nnolim UA (2017b) Smoothing and enhancement algorithms for underwater images based on partial differential equations. J Electron Imaging 26(2):023,009

    Article  Google Scholar 

  111. Oakley JP, Satherley BL (1998) Improving image quality in poor visibility conditions using a physical model for contrast degradation. IEEE Trans Image Process 7(2):167–179

    Article  Google Scholar 

  112. Pan X, Xie F, Jiang Z, Yin J (2015) Haze removal for a single remote sensing image based on deformed haze imaging model. IEEE Signal Process Lett 22(10):1806–1810

    Article  Google Scholar 

  113. Pellegrini P, Rodriguez J (2013) Single european sky and single european railway area: a system level analysis of air and rail transportation. Transp Res Part A Policy Pract 57:64–86

    Article  Google Scholar 

  114. Peng YT, Cosman PC (2017) Underwater image restoration based on image blurriness and light absorption. IEEE Trans Image Process 26(4):1579–1594

    Article  MathSciNet  MATH  Google Scholar 

  115. Peng YT, Zhao X, Cosman PC (2015) Single underwater image enhancement using depth estimation based on blurriness. In: 2015 IEEE international conference on image processing (ICIP). IEEE, pp 4952–4956

  116. Qiao X, Bao J, Zhang H, Zeng L, Li D (2017) Underwater image quality enhancement of sea cucumbers based on improved histogram equalization and wavelet transform. Inf Process Agric 4(3):206–213

    Google Scholar 

  117. Qing C, Yu F, Xu X, Huang W, Jin J (2016) Underwater video dehazing based on spatial–temporal information fusion. Multidimens Syst Signal Process 27(4):909–924

    Article  MathSciNet  Google Scholar 

  118. Qureshi MA, Beghdadi A, Deriche M (2017) Towards the design of a consistent image contrast enhancement evaluation measure. Signal Process Image Commun 58:212–227

    Article  Google Scholar 

  119. Riaz I, Fan X, Shin H (2016a) Single image dehazing with bright object handling. IET Comput Vis 10(8):817–827

    Article  Google Scholar 

  120. Riaz I, Yu T, Rehman Y, Shin H (2016b) Single image dehazing via reliability guided fusion. J Vis Commun Image Represent 40:85–97

    Article  Google Scholar 

  121. Rong Z, Jun WL (2014) Improved wavelet transform algorithm for single image dehazing. Optik Int J Light Electron Opt 125(13):3064–3066

    Article  Google Scholar 

  122. Schechner YY, Narasimhan SG, Nayar SK (2001) Instant dehazing of images using polarization. In: Proceedings of the 2001 IEEE computer society conference on computer vision and pattern recognition, 2001. CVPR 2001. IEEE, vol 1, p I

  123. Serikawa S, Lu H (2014) Underwater image dehazing using joint trilateral filter. Comput Electr Eng 40(1):41–50

    Article  Google Scholar 

  124. Shiau YH, Chen PY, Yang HY, Chen CH, Wang SS (2014) Weighted haze removal method with halo prevention. J Vis Commun Image Represent 25(2):445–453

    Article  Google Scholar 

  125. Shwartz S, Namer E, Schechner YY (2006) Blind haze separation. In: 2006 IEEE computer society conference on computer vision and pattern recognition. IEEE, vol 2, pp 1984–1991

  126. Singh D, Kumar V (2017a) Dehazing of remote sensing images using improved restoration model based dark channel prior. Imaging Sci J 65(5):1–11

    Article  Google Scholar 

  127. Singh D, Kumar V (2017b) Modified gain intervention filter based dehazing technique. J Mod Opt 64(20):1–14

    Article  Google Scholar 

  128. Singh D, Garg D, Singh Pannu H (2017) Efficient landsat image fusion using fuzzy and stationary discrete wavelet transform. Imaging Sci J 65(2):108–114

    Article  Google Scholar 

  129. Song H, Gao Y, Chen Y (2014) Fast image dehazing using fuzzy system and hybrid evolutionary algorithm. In: Foundations and practical applications of cognitive systems and information processing. Springer, pp 275–283

  130. Stanco F, Tenze L, Ramponi G (2005) Virtual restoration of vintage photographic prints affected by foxing and water blotches. J Electron Imaging 14(4):043,008

    Article  Google Scholar 

  131. Sun W (2013) A new single-image fog removal algorithm based on physical model. Optik Int J Light Electron Opt 124(21):4770–4775

    Article  Google Scholar 

  132. Sun W, Wang H, Sun C, Guo B, Jia W, Sun M (2015) Fast single image haze removal via local atmospheric light veil estimation. Comput Electr Eng 46:371–383

    Article  Google Scholar 

  133. Tan H, He X, Wang Z, Liu G (2016) Parallel implementation and optimization of high definition video real-time dehazing. Multimedia tools and applications, pp 1–22

  134. Tan RT (2008) Visibility in bad weather from a single image. In:. IEEE conference on computer vision and pattern recognition, 2008. CVPR 2008. IEEE, pp 1–8

  135. Tang K, Yang J, Wang J (2014) Investigating haze-relevant features in a learning framework for image dehazing. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 2995–3000

  136. Tang X, Jiao L (2017) Fusion similarity-based reranking for sar image retrieval. IEEE Geosci Remote Sens Lett 14(2):242–246

    Article  Google Scholar 

  137. Tarel JP, Hautiere N (2009) Fast visibility restoration from a single color or gray level image. In: 2009 IEEE 12th international conference on computer vision. IEEE, pp 2201–2208

  138. Tripathi AK, Mukhopadhyay S (2012) Removal of fog from images: a review. IETE Tech Rev 29(2):148–156

    Article  Google Scholar 

  139. Valls J, Aler R, Fernández Ó (2005) Using a mahalanobis-like distance to train radial basis neural networks. Computational intelligence and bioinspired systems, pp 504–510

  140. Vasamsetti S, Mittal N, Neelapu BC, Sardana HK (2017) Wavelet based perspective on variational enhancement technique for underwater imagery. Ocean Eng 141:88–100

    Article  Google Scholar 

  141. Wang D, Zhu J (2015) Fast smoothing technique with edge preservation for single image dehazing. IET Comput Vis 9(6):950–959

    Article  Google Scholar 

  142. Wang J, He N, Lu K (2015) A new single image dehazing method with msrcr algorithm. In: Proceedings of the 7th international conference on internet multimedia computing and service, ACM, p 19

  143. Wang L, Xiao L, Wei Z (2015b) Image dehazing using two-dimensional canonical correlation analysis. IET Comput Vis 9(6):903–913

    Article  Google Scholar 

  144. Wang L, Xie W, Pei J (2015c) Patch-based dark channel prior dehazing for rs multi-spectral image. Chin J Electron 24(3):573–578

    Article  Google Scholar 

  145. Wang R, Li R, Sun H (2016) Haze removal based on multiple scattering model with superpixel algorithm. Signal Process 127:24–36

    Article  Google Scholar 

  146. Wang W, Yuan X, Wu X, Liu Y (2017a) Dehazing for images with large sky region. Neurocomputing 238:365–376

    Article  Google Scholar 

  147. Wang W, Yuan X, Wu X, Liu Y (2017b) Fast image dehazing method based on linear transformation. IEEE Trans Multimed 19(6):1142–1155

    Article  Google Scholar 

  148. Wang YK, Fan CT (2014) Single image defogging by multiscale depth fusion. IEEE Trans Image Process 23(11):4826–4837. https://doi.org/10.1109/TIP.2014.2358076

    Article  MathSciNet  MATH  Google Scholar 

  149. Wang Z, Feng Y (2014) Fast single haze image enhancement. Comput Electr Eng 40(3):785–795

    Article  Google Scholar 

  150. Wei Q, Bioucas-Dias J, Dobigeon N, Tourneret JY, Chen M, Godsill S (2016) Multiband image fusion based on spectral unmixing. IEEE Trans Geosci Remote Sens 54(12):7236–7249

    Article  Google Scholar 

  151. Wen H, Tian Y, Huang T, Gao W (2013) Single underwater image enhancement with a new optical model. In: 2013 IEEE international symposium on circuits and systems (ISCAS). IEEE, pp 753–756

  152. Wong CY, Liu S, Liu SC, Rahman MA, Lin SCF, Jiang G, Kwok N, Shi H (2016) Image contrast enhancement using histogram equalization with maximum intensity coverage. J Mod Opt 63(16):1618–1629

    Article  MathSciNet  MATH  Google Scholar 

  153. Wong HS, Guan L (1998) Adaptive regularization in image restoration by unsupervised learning. J Electron Imaging 7(1):211–222

    Article  Google Scholar 

  154. Wu F, Wang B, Yi X, Li M, Hao J, Qin H, Zhou H (2015) Visible and infrared image registration based on visual salient features. J Electron Imaging 24(5):053,017

    Article  Google Scholar 

  155. Xie B, Guo F, Cai Z (2010) Improved single image dehazing using dark channel prior and multi-scale retinex. In: 2010 international conference on intelligent system design and engineering application (ISDEA). IEEE, vol 1, pp 848–851

  156. Xie CH, Qiao WW, Liu Z, Ying WH (2016) Single image dehazing using kernel regression model and dark channel prior. Signal, image and video processing, pp 1–8

  157. Xiong L, Li H, Xu L (2017) An enhancement method for color retinal images based on image formation model. Comput Methods Programs Biomed 143:137–150

    Article  Google Scholar 

  158. Xu H, Guo J, Liu Q, Ye L (2012) Fast image dehazing using improved dark channel prior. In: 2012 IEEE international conference on information science and technology. IEEE, pp 663–667

  159. Xu Y, Wen J, Fei L, Zhang Z (2016) Review of video and image defogging algorithms and related studies on image restoration and enhancement. IEEE Access 4:165–188

    Article  Google Scholar 

  160. Xue Y, Ren J, Su H, Wen M, Zhang C (2013) Parallel implementation and optimization of haze removal using dark channel prior based on cuda. In: High performance computing. Springer, pp 99–109

  161. Yang HY, Chen PY, Huang CC, Zhuang YZ, Shiau YH (2011) Low complexity underwater image enhancement based on dark channel prior. In: 2011 second international conference on innovations in bio-inspired computing and applications (IBICA). IEEE, pp 17–20

  162. Yang Y, Sun X, Yang H, Li CT (2008) Removable visible image watermarking algorithm in the discrete cosine transform domain. J Electron Imaging 17(3):033,008

    Article  Google Scholar 

  163. Yang Y, Fu Z, Li X, Shu C, Li X (2013) A novel single image dehazing method. In: 2013 international conference on computational problem-solving (ICCP). IEEE, pp 275–278

  164. Yoon SM (2016) Visibility enhancement of fog-degraded image using adaptive total variation minimisation. Imaging Sci J 64(2):82–86

    Article  Google Scholar 

  165. Yu T, Riaz I, Piao J, Shin H (2015) Real-time single image dehazing using block-to-pixel interpolation and adaptive dark channel prior. IET Image Process 9(9):725–734

    Article  Google Scholar 

  166. Yuan H, Liu C, Guo Z, Sun Z (2017) A region-wised medium transmission based image dehazing method. IEEE Access 5:1735–1742

    Article  Google Scholar 

  167. Zeng L, Dai Y (2016) Single image dehazing based on combining dark channel prior and scene radiance constraint. Chin J Electron 25(6):1114–1120

    Article  Google Scholar 

  168. Zhang B, Zhao J (2017) Hardware implementation for real-time haze removal. IEEE Trans VLSI Syst 25(3):1188–1192

    Article  Google Scholar 

  169. Zhang J, Hu S (2014) A gpu-accelerated real-time single image de-hazing method using pixel-level optimal de-hazing criterion. J Real Time Image Process 9(4):661–672

    Article  Google Scholar 

  170. Zhang W, Hou X (2017) Estimation algorithm of atmospheric light based on ant colony optimization. In: Proceedings of the 2017 international conference on intelligent systems, metaheuristics & swarm intelligence, ACM, pp 20–25

  171. Zhang W, Liang J, Ju H, Ren L, Qu E, Wu Z (2017) Study of visibility enhancement of hazy images based on dark channel prior in polarimetric imaging. Optik Int J Light Electron Opt 130:123–130

    Article  Google Scholar 

  172. Zhao H, Xiao C, Yu J, Xu X (2015a) Single image fog removal based on local extrema. IEEE/CAA J Autom Sin 2(2):158–165

    Article  MathSciNet  Google Scholar 

  173. Zhao X, Jin T, Qu S (2015b) Deriving inherent optical properties from background color and underwater image enhancement. Ocean Eng 94:163–172

    Article  Google Scholar 

  174. Zhao X, Ding W, Liu C, Li H (2017) Haze removal for uav aerial video based on optimization of spatial-temporal coherence. IET Image Process 12(1):88–97

    Article  Google Scholar 

  175. Zheng L, Shi H, Gu M (2017) Infrared traffic image enhancement algorithm based on dark channel prior and gamma correction. Mod Phys Lett B:1740044

  176. Zheng N, Loizou G, Jiang X, Lan X, Li X (2007) Computer vision and pattern recognition. Int J Comput Math 84(9):1265–1266

    Article  MATH  Google Scholar 

  177. Zhu Q, Mai J, Shao L (2015) A fast single image haze removal algorithm using color attenuation prior. IEEE Trans Image Process 24(11):3522–3533

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dilbag Singh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, D., Kumar, V. A Comprehensive Review of Computational Dehazing Techniques. Arch Computat Methods Eng 26, 1395–1413 (2019). https://doi.org/10.1007/s11831-018-9294-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-018-9294-z