Abstract
In today digital society, vulnerability to person authentication is a serious issue in real time scenarios like (airport, hospital, metro stations, etc.). This issue has increased the growth of video surveillance security systems. In recent decades behavioral biometric trait gait has emerged as a potential surveillance monitoring system because of its inconspicuous and unperceivable nature. Even more human gait has a benefit that it can be tracked at a distance and under low resolution videos. Finally, it is difficult to impersonate gait features. In this article, we comprehensively investigate the past and current research development in vision-based (VB) gait recognition. We give a brief description of feature selection and classification techniques used in gait recognition. The article extensively investigates feature representation techniques, classified into model-based and model-free. The article also provides a detail description of databases that are available for research purposes classified into two categories: VB and sensor-based. We extensively examine factors that affect gait recognition, and current research was done to cope with these factors. Moreover, this article proposes future perspectives after investigating state-of-art literature that can be more helpful to experts and new comers in gait recognition. In last, we also give a brief description of the proposed workflow.
Similar content being viewed by others
References
Jain AK, Nandakumar K, Ross A (2016) 50 years of biometric research: accomplishments, challenges, and opportunities. Pattern Recogn Lett 79:80–105. https://doi.org/10.1016/j.patrec.2015.12.013
Jain AK, Ross A, Prabhakar S (2004) An introduction to biometric recognition. IEEE Trans Circuits Syst Video Technol 14(1):4–20. https://doi.org/10.1109/TCSVT.2003.818349
Biometric System Market. Accessed: December 20, 2018. [Online]. https://www.marketsandmarkets.com/PressReleases/biometric-technologies.asp
Find Biometrics Global Identity Management [online]. https://findbiometrics.com/yir-exciting-modalities-part-1-501110/. Accessed 10 Feb 2019
Lee TKM, Belkhatir M, Sanei S (2014) A comprehensive review of past and present vision-based techniques for gait recognition. Multimed Tools Appl 72(3):2833–2869. https://doi.org/10.1007/s11042-013-1574-x
Boulgouris NV, Hatzinakos D, Plataniotis KN (2005) Gait recognition: a challenging signal processing technology for biometric identification. IEEE Signal Process Mag 22(6):78–90
Kim D, Kim D, Paik J (2010) Gait recognition using active shape model and motion prediction. IET Comput Vision 4(1):25–36. https://doi.org/10.1049/iet-cvi.2009.0009
Boyd JE, Little JJ (2005) Biometric gait recognition In: Advanced studies in biometrics, pp 19–42. https://doi.org/10.1007/11493648_2
Masood H, Farooq H (2017) A proposed framework for vision based gait biometric system against spoofing attacks. In: International conference on communication, computing and digital systems (C-CODE), pp. 357–362. https://doi.org/10.1109/c-code.2017.7918957
Nixon MS, Carter JN (2004) Advances in automatic gait recognition. In: 6th IEEE international conference on automatic face and gesture recognition, pp 139–144. https://doi.org/10.1109/afgr.2004.1301521
Bashir K, Xiang T, Gong S (2010) Gait recognition without subject cooperation. Pattern Recogn Lett 31(13):2052–2060. https://doi.org/10.1016/j.patrec.2010.05.027
Weber W, Weber E (1836) Mechanik der menschlichen Gehwerkzeuge. Dieterich, Göttingen
Murray MP, Drought AB, Kory RC (1964) Walking patterns of normal men. J Bone Joint Surg Am 46(2):335–360
Murray MP (1967) Gait as a total pattern of movement. Am J Phys Med 46(1):290–333
Kale A, Sundaresan A, Rajagopalan AN (2004) Identification of humans using gait. IEEE Trans Image Process 13(9):1163–1173. https://doi.org/10.1109/TIP.2004.832865
Zeng W, Wang C (2016) View-invariant gait recognition via deterministic learning. Neurocomputing 175:324–335. https://doi.org/10.1016/j.neucom.2015.10.065
Wu Z, Huang Y, Wang L, Wang X, Tan T (2016) A comprehensive study on cross-view gait based human identification with deepCNNs. IEEE Trans Pattern Anal Mach Intell 39(2):209–226. https://doi.org/10.1109/TPAMI.2016.2545669
Xu W, Luo C, Ji A, Zhu C (2017) Coupled locality preserving projections for cross-view gait recognition. Neurocomputing 224:37–44. https://doi.org/10.1016/j.neucom.2016.10.054
Nandy A, Chakraborty R, Chakraborty P (2016) Cloth invariant gait recognition using pooled segmented statistical features. Neuro Comput 191:117–140. https://doi.org/10.1016/j.neucom.2016.01.002
Rida I, Jiang X, Marcialis GL (2016) Human body part selection by group lasso of motion for model-free gait recognition. IEEE Signal Process Lett 23(1):154–158. https://doi.org/10.1109/LSP.2015.2507200
Choudhury SD, Tjahjadi T (2016) Clothing and carrying condition invariant gait recognition based on rotation forest. Pattern Recogn Lett 80:1–7. https://doi.org/10.1016/j.patrec.2016.05.009
Mansur A, Makihara Y, Aqmar R, Yagi Y (2014) Gait recognition under speed transition. In: IEEE conference on computer vision and pattern recognition, pp 2521–2528
Aqmar MR, Shinoda K, Furui S (2010) Robust gait recognition against speed variation. In: International conference on pattern recognition, pp 2190–2193. https://doi.org/10.1109/icpr.2010.536
Guan Y, Li C-T (2013) A robust speed-invariant gait recognition system for walker and runner identification. In: International conference on biometrics (ICB), pp 1–8. https://doi.org/10.1109/icb.2013.6612965
Chen X, Xu J, Weng J (2017) Multi-gait recognition using hypergraph partition. Mach Vis Appl 28(1–2):117–127. https://doi.org/10.1007/s00138-016-0810-6
Chen X, Weng J, Lu W, Xu J (2017) Multi-gait recognition based on attribute discovery. IEEE Trans Pattern Anal Mach Intell. https://doi.org/10.1109/TPAMI.2017.2726061
Chen X, Yang T, Xu J (2016) Multi-gait identification based on multi linear analysis and multi-target tracking. Multimed Tools Appl 75(11):6505–6532. https://doi.org/10.1007/s11042-015-2585-6
Connor P, Ross A (2018) Biometric recognition by gait: a survey of modalities and features. Comput Vis Image Underst 167:1–27. https://doi.org/10.1016/j.cviu.2018.01.007
Sprager S, Juric MB (2015) Inertial sensor-based gait recognition: a review. Sensors 15(9):22089–22127. https://doi.org/10.3390/s150922089
Tao W, Liu T, Zheng R, Feng H (2012) Gait analysis using wearable sensors. Sensors 12(2):2255–2283. https://doi.org/10.3390/s120202255
Aggarwal JK, Cai Q (1997) Human motion analysis: a review. In: Proceeding IEEE conference on non rigid and articulated motion workshop, pp 90–102
Wang J, She M, Nahavandi S, Kouzani A (2010) A review of vision-based gait recognition methods for human identification. In: IEEE computer society conference on digital image computing: techniques and applications, pp 320–327. https://doi.org/10.1109/dicta.2010.62
Zhang Z, Hu M, Wang Y (2011) A survey of advances in biometric gait recognition. In: Chinese conference on biometric recognition, pp 150–158
Lv Z, Xing X, Wang K, Guan D (2015) Class energy image analysis for video sensor-based gait recognition: a review. Sensors 15(1):932–964. https://doi.org/10.3390/s150100932
Shirke S, Pawar SS, Shah K (2014) Literature review: model free human gait recognition. In: IEEE computer society fourth international conference on communication systems and network technologies, pp 891–895. https://doi.org/10.1109/csnt.2014.252
Wayman JL (2001) Fundamentals of biometric authentication technologies. Int J Image Graph 01(01):93–113
Introduction to Biometric Summer 2006 Lectures [online]. http://www.cse.ust.hk/~helens/csit520/Lecture/Lecture.html. Accessed 17 Oct 2018
Lu J, Wang G, Moulin P (2014) Human identity and gender recognition from gait sequences with arbitrary walking directions. IEEE Trans Inf Forensics Secur 9(1):51–61. https://doi.org/10.1109/tifs.2013.2291969
Yu S, Tan T, Huang K, Jia K, Wu X (2009) A study on gait-based gender classification. IEEE Trans Image Process 18(8):1905–1910. https://doi.org/10.1109/TIP.2009.2020535
De Z (2015) Research on gait based gender classification via fusion of multiple views. Int J Database Theory Appl 8(5):39–50
Lu J, Tan Y-P (2010) Gait-based human age estimation. IEEE Trans Inf Forensics Secur 5(4):761–770. https://doi.org/10.1109/TIFS.2010.2069560
Zhang D, Wang Y, Bhanu B (2010) Age classification based on gait using HMM. In: International conference on pattern recognition, pp 3834–3837
Weiss RJ, Wretenberg P, Stark A, Palmblad K, Larsson P, Grondal L, Brostrom E (2008) Gait pattern in rheumatoid arthritis. Gait Posture 28(2):229–234
Saad A, Zaarour I, Guerin F, Bejjani P, Ayache M, Lefebvre D (2017) Detection of freezing of gait for Parkinson’s disease patients with multi-sensor device and Gaussian neural networks. Int J Mach Learn Cybern 8(3):941–954
Tupa O, Prochazka A, Vysata O, Schatz M, Mareš J, Valis M, Marik V (2015) Motion tracking and gait feature estimation for recognising Parkinson’s disease using MS Kinect. Biomed Eng Online 14(1):97
Johansson G (1973) Visual perception of biological motion and a model for its analysis. Percept Psychophys 14(2):201–211
Cutting JE, Kozlowski LT (1977) Recognizing friends by their walk: gait perception without familiarity cues. Bull Psychon Soc 9(5):353–356
Niyogi S, Adelson E (1994) Analyzing and recognizing walking figures in XYT. In: IEEE computer society conference on computer vision and pattern recognition, pp 469–474
Wang L, Tan T, Weiming H, Ning H (2003) Automatic gait recognition based on statistical shape analysis. IEEE Trans Image Process 12(9):1120–1131. https://doi.org/10.1109/TIP.2003.815251
Wang L, Ning H, Tan T, Weiming H (2004) Fusion of static and dynamic body biometrics for gait recognition. IEEE Trans Circuits Syst Video Technol 14(2):149–158. https://doi.org/10.1109/TCSVT.2003.821972
Okuno R, Fujimoto S, Akazawa J, Yokoe M, Sakoda S, Akazawa K (2008) Analysis of spatial temporal plantar pressure pattern during gait in Parkinson’s disease. In: 30th annual international IEEE EMBS conference, pp 1765–1768
Zheng S, Huang K, Tan T (2011) Evaluation framework on translation-invariant representation for cumulative foot pressure image. In: 18th IEEE international conference on image processing, pp 201–204
Kotti M, Duffell LD, Faisal AA, McGregor AH (2017) Detecting knee osteoarthritis and its discriminating parameters using random forests. Med Eng Phys 43:19–29. https://doi.org/10.1016/j.medengphy.2017.02.004
Ngo TT, Makihara Y, Nagahara H, Mukaigawa Y, Yagi Y (2014) The largest inertial sensor-based gait database and performance evaluation of gait-based personal authentication. Pattern Recogn 47(1):228–237. https://doi.org/10.1109/ICB.2012.6199833
Ngo TT, Makihara Y, Nagahara H, Mukaigawa Y, Yagi Y (2015) Similar gait action recognition using an inertial sensor. Pattern Recogn 48(4):1289–1301. https://doi.org/10.1016/j.patcog.2014.10.012
Tereso A, Martins MM, Santos CP (2015) Evaluation of gait performance of knee osteoarthritis patients after total knee arthroplasty with different assistive devices. Res Biomed Eng 31(3):208–217. https://doi.org/10.1590/2446-4740.0729
Bergmann JHM et al (2013) An attachable clothing sensor system for measuring knee joint angles. IEEE Sens J 13(10):4090–4097. https://doi.org/10.1109/JSEN.2013.2277697
Bachlin M, Plotnik M, Roggen D, Maidan I, Hausdorff JM, Giladi N, Troster G (2010) Wearable assistant for Parkinson’s disease patients with the freezing of gait symptom. IEEE Trans Inf Technol Biomed 14(2):436–446. https://doi.org/10.1109/TITB.2009.2036165
Muaaz M, Mayrhofer R (2017) Smartphone-based gait recognition: from authentication to imitation. IEEE Trans Mob Comput 16(11):3209–3221
Yoneyama M, Kurihara Y, Watanabe K, Mitoma H (2014) Accelerometry-based gait analysis and its application to Parkinson’s disease assessment—part 1: detection of stride event. IEEE Trans Neural Syst Rehabil Eng 22(3):613–622. https://doi.org/10.1109/TNSRE.2013.2260561
Cui X, Zhao Z, Ma C, Chen F, Liao H (2018) A gait character analyzing system for osteoarthritis pre-diagnosis using RGB-D camera and supervised classifier. In: World congress on medical physics and biomedical engineering, IFMBE proceedings, pp 297–301. https://doi.org/10.1007/978-981-10-9035-6_53
Mahyuddin A, Mihradi S, Dirgantara T, Moeliono M, Prabowo T (2012) Development of Indonesian gait database using 2D optical motion analyzer system. ASEAN Eng J Part A 2(2):62–72
Yun Y, Kim H-C, Shin SY, Lee J, Deshpande AD, Kim C (2014) Statistical method for prediction of gait kinematics with Gaussian process regression. J Biomech 47(1):186–192. https://doi.org/10.1016/j.jbiomech.2013.09.032
Moore JK, Hnat SK, van den Bogert AJ (2015) An elaborate data set on human gait and the effect of mechanical perturbations. PeerJ 3:e918. https://doi.org/10.7717/peerj.918
Ishikawa Y et al (2017) Gait analysis of patients with knee osteoarthritis by using elevation angle: confirmation of the planar law and analysis of angular difference in the approximate plane. Adv Robot 31(1–2):68–79. https://doi.org/10.1080/01691864.2016.1229217
Iwama H, Okumura M, Makihara Y, Yagi Y (2012) The OU-ISIR gait database comprising the large population dataset and performance evaluation of gait recognition. IEEE Trans Inf Forensics Secur 7(5):1511–1521. https://doi.org/10.1109/TIFS.2012.2204253
Iwashita Y, Ogawara K, Kurazume R (2014) Identification of people walking along curved trajectories. Pattern Recogn Lett 48:60–69. https://doi.org/10.1016/j.patrec.2014.04.004
Kastaniotis D, Theodorakopoulos I, Economou G, Fotopoulos S (2013) Gait-based gender recognition using pose information for real time applications. In: 18th international conference on digital signal processing (DSP), pp 1–6
Hofmann M, Geiger J, Bachmann S, Schuller B, Rigoll G (2014) The TUM gait from audio, image and depth (GAID) database: multimodal recognition of subjects and traits. Vis Commun Image Represent 25(1):195–206. https://doi.org/10.1016/j.jvcir.2013.02.006
Borras R, Lapedriza A, Igual L (2012) Depth information in human gait analysis: an experimental study on gender recognition. In: International conference image analysis and recognition (ICIAR), pp 98–105
Wang Y, Sun J, Li J, Zhao D (2016) Gait recognition based on 3D skeleton joints captured by kinect. In: IEEE international conference on image processing (ICIP), pp 3151–3155
Tang S, Andriluka M, Schiele B (2014) Detection and tracking of occluded people. Int J Comput Vis 110(1):58–69. https://doi.org/10.1007/s11263-013-0664-6
Bhowmick S, Nandy A, Chakraborty P, Nandi GC (2014) A speed invariant human identification system using gait biometrics. Int J Comput Vis Robot 4(1/2):3–22. https://doi.org/10.1504/IJCVR.2014.059356
Han J, Bhanu B (2006) Individual recognition using gait energy image. IEEE Trans Pattern Anal Mach Intell 28(2):316–322. https://doi.org/10.1109/TPAMI.2006.38
Kusakunniran W (2014) Recognizing gaits on spatio-temporal feature domain. IEEE Trans Inf Forensics Secur 9(9):1416–1423. https://doi.org/10.1109/TIFS.2014.2336379
Choudhury SD, Tjahjadi T (2012) Silhouette-based gait recognition using Procrustes shape analysis and elliptic Fourier descriptors. Pattern Recogn 45(9):3414–3426. https://doi.org/10.1016/j.patcog.2012.02.032
Sarkar S, Phillips PJ, Liu Z, Vega IR, Grother P, Bowyer KW (2005) The HumanID gait challenge problem: data sets, performance, and analysis. IEEE Trans Pattern Anal Mach Intell 27(2):162–177. https://doi.org/10.1109/TPAMI.2005.39
Sudha LR, Bhavani R (2013) An efficient spatio-temporal gait representation for gender classification. Appl Artif Intell 27(1):62–75. https://doi.org/10.1080/08839514.2013.747373
Shao H, Wang Y, Wang Y, Hu W (2016) A preprocessing method for gait recognition. In: International Conference of young computer scientists, engineers and educators, pp 77–86
Wang L, Tan T, Ning H, Weiming H (2003) Silhouette analysis-based gait recognition for human identification. IEEE Trans Pattern Anal Mach Intell 25(12):1505–1518. https://doi.org/10.1109/TPAMI.2003.1251144
BenAbdelkader C, Cutler R, Davis L (2002) Stride and cadence as a biometric in automatic person identification and verification. In: Proceedings of Fifth IEEE international conference on automatic face gesture recognition, pp 372–377
Kusakunniran W, Qiang W, Zhang J, Li H (2012) Gait recognition under various viewing angles based on correlated motion regression. IEEE Trans Circuits Syst Video Technol 22(6):966–980. https://doi.org/10.1109/TCSVT.2012.2186744
Li C, Min X, Sun S, Lin W, Tang Z (2017) DeepGait: a learning deep convolutional representation for view-invariant gait recognition using joint Bayesian. Appl Sci. https://doi.org/10.3390/app7030210
Yeoh T, Zapotecas-Martínez S, Akimoto Y, Aguirre H, Tanaka K (2014) Genetic algorithm assisted by a SVM for feature selection in gait classification. In: International symposium on intelligent signal processing and communication systems (ISPACS), pp 191–195. https://doi.org/10.1109/ispacs.2014.7024450
Tafazzoli F, Bebis G, Louis S, Hussain M (2015) Genetic features election for gait recognition. J Electron Imaging 24(1):013036. https://doi.org/10.1117/1.JEI.24.1.013036
Huang S, Elgammal A, Jiwen L, Yang D (2015) Cross-speed gait recognition using speed-invariant gait templates and globality-locality preserving projections. IEEE Trans Inf Forensics Secur 10(10):2071–2083. https://doi.org/10.1109/TIFS.2015.2445315
Iwashita Y, Kakeshita M, Sakano H, Kurazume R (2017) Making gait recognition robust to speed changes using mutual subspace method. IEEE international conference on robotics and automation (ICRA), pp 2273–2278. https://doi.org/10.1109/icra.2017.7989261
BenAbdelkader C, Cutler R, Davis L (2002) Motion-based recognition of people in EigenGait space. In: Proceedings of Fifth IEEE international conference on automatic face gesture recognition, pp 267–272. https://doi.org/10.1109/afgr.2002.1004165
Han J, Bhanu B, Roy-Chowdhury AK (2005)“A study on view-insensitive gait recognition. In: IEEE international conference on image processing, vol 5, pp III–297. https://doi.org/10.1109/icip.2005.1530387
Cheng Q, Fu B, Chen H (2009) Gait recognition based on PCA and LDA. In: International symposium on computer science and computational technology (ISCSCI). Academy Publisher, pp 124–127
Hongye X, Zhuoya H (2015) Gait recognition based on gait energy image and linear discriminant analysis. In: IEEE international conference on signal processing, communications and computing (ICSPCC), pp 1–4. https://doi.org/10.1109/icspcc.2015.7338934
Boulgouris NV, Chi ZX (2007) Gait recognition using radon transform and linear discriminant analysis. IEEE Trans Image Process 16(3):731–740. https://doi.org/10.1109/TIP.2007.891157
Isaac ERHP, Elias S, Rajagopalan S, Easwarakumar KS (2017) View-invariant gait recognition through genetic template segmentation. IEEE Signal Process Lett 24(8):1188–1192. https://doi.org/10.1109/LSP.2017.2715179
Lishani AO, Boubchir L, Khalifa E, Bouridane A (2017) Human gait recognition based on Haralick features. Signal Image Video Process 11(6):1123–1130. https://doi.org/10.1007/s11760-017-1066-y
Wang X, Wang J, Yan K (2018) Gait recognition based on Gabor wavelets and (2D)2 PCA. Multimed Tools Appl 77:12545–12561. https://doi.org/10.1007/s11042-017-4903-7
Tan D, Huang K, Yu S, Tan T (2006) “Efficient Night gait recognition based on template matching. In: 18th international conference on pattern recognition (ICPR), pp 1000–1003
Wang L, Hu W, Tan T (2002) A new attempt to gait-based human identification. In: Proceeding of 16th international conference on pattern recognition, pp 115–118
Sundaresan A, Chowdhuiy AR, Chellappa R (2003) A hidden markov model based frameworkfor recognition of humans from gait sequences. In: Proceedings of international conference on image processing, pp 93–96
Ran Y, Zheng Q, Chellappa R, Strat TM (2010) Applications of a simple characterization of human gait in surveillance. IEEE Trans Syst Man Cybern Part B Cybern 40(4):1009–1020. https://doi.org/10.1109/TSMCB.2010.2044173
Wang C, Zhang J, Wang L, Pu J (2012) X, Human identification using temporal information preserving gait template. IEEE Trans Pattern Anal Mach Intell 34(11):2164–2176. https://doi.org/10.1109/TPAMI.2011.260
Zheng S, Zhang J, Huang K, He R, Tan T (2011) Robust view transformation model for gait recognition. In: 18th IEEE international conference on image processing, pp 2073–2076. https://doi.org/10.1109/icip.2011.6115889
Zhang Z, Troje NF (2005) View-independent person identification from human gait. Neurocomputing 69:250–256. https://doi.org/10.1016/j.neucom.2005.06.002
Hofman M, Sural S, Rigoll G (2011) Gait recognition in the presence of occlusion: a new dataset and baseline algorithms. In Proceedings of the 19th international conference in Central Europe on computer graphics, visualization and computer vision, pp. 99–104
KovaI J, Peer P (2014) Human skeleton model based dynamic features for walking speed invariant gait recognition. Math Probl Eng 2014:15. https://doi.org/10.1155/2014/484320
Li W, Kuo C-CJ, Peng J (2018) Gait recognition via GEI subspace projections and collaborative representation classification. Neurocomputing 275:1932–1945. https://doi.org/10.1016/j.neucom.2017.10.049
Portillo J et al (2017) Cross view gait recognition using joint-direct linear discriminant analysis. Sensors 17(1):6. https://doi.org/10.3390/s17010006
Kusakunniran W, Wu Q, Li H, Zhang J (2009) Multiple views gait recognition using view transformation model based on optimized gait energy image. In: 12th international conference on computer vision workshops, pp 1058–1064. https://doi.org/10.1109/iccvw.2009.5457587
Makihara Y, Mansur A, Muramatsu D, Uddin Z, Yagi Y (2015) Multi-view discriminant analysis with tensor representation and its application to cross-view gait recognition. In: 11th IEEE international conference and workshops on automatic face and gesture recognition (FG), pp 1–8. https://doi.org/10.1109/fg.2015.7163131
Mansur A, Makihara Y, Muramatsu D, Yagi Y (2014) Cross-view gait recognition using view-dependent discriminative analysis. In: IEEE international joint conference on biometrics, pp 1–8. https://doi.org/10.1109/btas.2014.6996272
Ortells J, Mollineda RA, Mederos B, Martín-Felez R (2017) Gait recognition from corrupted silhouettes: a robust statistical approach. Mach Vis Appl 28(1–2):15–33. https://doi.org/10.1007/s00138-016-0798-y
Castro FM, Marın-Jimenez MJ, Guil N, Perez de la Blanca N (2018) Multimodal feature fusion for CNN-based gait recognition: an empirical comparison. arXiv:abs/1806.07753
Li X, Maybank SJ, Yan S, Tao D, Dong X (2008) Gait components and their application to gender recognition. IEEE Trans Syst Man Cybern Part C Appl Rev 38(2):145–155. https://doi.org/10.1109/TSMCC.2007.913886
Nandy A, Pathak A, Chakraborty P (2017) A study on gait entropy image analysis for clothing invariant human identification. Multimed Tools Appl 76(7):9133–9167. https://doi.org/10.1007/s11042-016-3505-0
Kwolek B, Krzeszowski T, Michalczuk A, Josinski HK (2014) 3D gait recognition using spatio-temporal motion descriptors. In: Asian conference on intelligent information and database systems (ACIIDS), pp 595–604
Havasi L, Szlavik Z, Sziranyi T (2006) Higher order symmetry for non-linear classification of human walk detection. Pattern Recogn Lett 27:822–829
Kumar R, Phoha VV, Jain A (2015) Treadmill attack on gait-based authentication systems. In: 7th international conference on biometrics theory, applications and systems (BTAS), pp 1–7. https://doi.org/10.1109/btas.2015.7358801
Makihara Y, Suzuki A, Muramatsu D, Li X, Yagi Y (2011) Joint intensity and spatial metric learning for robust gait recognition. In: International conference on computer vision, pp 571–578
López-Fernández D, Madrid-Cuevas FJ, Carmona-Poyato A, Muñoz-Salinas R, Medina-Carnicer R (2016) A new approach for multi-view gait recognition on unconstrained paths. J Vis Commun Image Represent 38:396–406
Kastaniotis D, Theodorakopoulos I, Theoharatos C, Economou G, Fotopoulos S (2015) A framework for gait-based recognition using kinect. Pattern Recogn Lett 68(2):327–335. https://doi.org/10.1016/j.patrec.2015.06.020
Connie T, Goh KOM, Teoh ABJ (2016) Multi-view gait recognition using a doubly-kernel approach on the Grassmann manifold. Neurocomputing 216:534–542. https://doi.org/10.1016/j.neucom.2016.08.002
Muramatsu D, Makihara Y, Yagi Y (2016) View transformation model incorporating quality measures for cross-view gait recognition. IEEE Trans Cybern. https://doi.org/10.1109/tcyb.2015.2452577
Muramatsu D, Makihara Y, Yagi Y (2015) Cross-view gait recognition by fusion of multiple transformation consistency measures. IET Biom 4(2):62–73. https://doi.org/10.1049/iet-bmt.2014.0042
Fernández D et al (2015) Entropy volumes for viewpoint-independent gait recognition. Machine Vision and Applications 26:1079–1094. https://doi.org/10.1007/s00138-015-0707-9
Haifeng H (2014) Multiview gait recognition based on patch distribution features and uncorrelated multi linear sparse local discriminant canonical correlation analysis. IEEE Trans Circuits Syst Video Technol 24(4):617–630. https://doi.org/10.1109/TCSVT.2013.2280098
Yeoh TW, Daolio F, Aguirre HE, Tanaka K (2017) On the effectiveness of feature selection methods for gait classification under different covariate factors. Appl Soft Comput 61:42–57. https://doi.org/10.1016/j.asoc.2017.07.041
Begg RK, Palaniswami M, Owen B (2005) Support vector machines for automated gait classification. IEEE Trans Biomed Eng 52(5):828–838
Krzeszowski T, Michalczuk A, Kwolek B, Switonski A, Josinski H (2013) Gait recognition based on marker-less 3D motion capture. In: 10th IEEE international conference on advanced video and signal based surveillance, pp 232–237
Kusakunniran W, Wu Q, Zhang J, Li H (2012) Cross-view and multi-view gait recognitions based on view transformation model using multi-layer perceptron. Pattern Recogn Lett 33:882–889. https://doi.org/10.1016/j.patrec.2011.04.014
Zeng W, Wang C, Li Y (2014) Model-based human gait recognition via deterministic learning. Cognitive Computation 6(2):218–229. https://doi.org/10.1007/s12559-013-9221-4
Zeng W, Wang C (2015) Gait recognition across different walking speeds via deterministic learning. Neurocomputing 152:139–150. https://doi.org/10.1016/j.neucom.2014.10.079
Yoo J-H, Hwang D, Moon K-Y, Nixon MS (2008) Automated human recognition by gait using neural network. In: First workshops on image processing theory, tools and applications (IPTA), pp 1–6
Kusakunniran W, Qiang W, Zhang J, Ma Y, Li H (2013) A new view-invariant feature for cross-view gait recognition. IEEE Trans Inf Forensics Secur 8(10):1642–1653. https://doi.org/10.1109/TIFS.2013.2252342
Guan Y, Li C-T, Roli F (2015) On reducing the effect of covariate factors in gait recognition: a classifier ensemble method. IEEE Trans Pattern Anal Mach Intell 37(7):521–1528. https://doi.org/10.1109/TPAMI.2014.2366766
Zeng W, Wang C (2012) Human gait recognition via deterministic learning. Neural Netw 35:92–102. https://doi.org/10.1016/j.neunet.2012.07.012
Batchuluun G, Yoon HS, Kang JK, Park KR (2018) Gait-based human identification by combining shallow convolutional neural network-stacked long short-term memory and deep convolutional neural network. IEEE Access 6:63164–63186. https://doi.org/10.1109/ACCESS.2018.2876890
Takemura N, Makihara Y, Muramatsu D, Echigo T, Yagi Y (2018) On input/output architectures for convolutional neural network-based cross-view gait recognition. IEEE Trans Circuits Syst Video Technol 28(1):1. https://doi.org/10.1109/TCSVT.2017.2760835
Liu W, Zhang C, Ma H, Li S (2018) Learning efficient spatial-temporal gait features with deep learning for human identification. Neuroinformatics 16:457–471. https://doi.org/10.1007/s12021-018-9362-4
Alotaibi M, Mahmood A (2015) Improved Gait recognition based on specialized deep convolutional neural networks. In: IEEE applied imagery pattern recognition workshop (AIPR), Washington, DC, pp 1–7. https://doi.org/10.1109/aipr.2015.7444550
Alotaibi M, Mahmood A (2017) Improved gait recognition based on specialized deep convolutional neural network. Comput Vis Image Underst 164:103–110. https://doi.org/10.1016/j.cviu.2017.10.004
Guntor et al (2018) Convolutional neural network (CNN) based gait recognition system using microsoft kinect skeleton features. Int J Eng Technol 7:202-205. https://doi.org/10.14419/ijet.v7i4.11.20806
Wolf T, Babaee M, Rigoll G (2016) Multi-view gait recognition using 3D convolutional neural networks. In: IEEE international conference on image processing (ICIP), pp 4165–4169. https://doi.org/10.1109/icip.2016.7533144
Marın-Jiménez MJ, Castro FM, Guil N, de la Torre F, Medina-Carnicer R (2017) Deep multi-task learning for gait-based biometrics. In: IEEE international conference on image processing (ICIP), pp 106–110
Yao L, Kusakunniran W, Wu Q, Zhang J, Tang Z (2018) Robust CNN-based gait verification and identification using skeleton gait energy image. In: Digital image computing: techniques and applications (DICTA), pp 1–7. https://doi.org/10.1109/dicta.2018.8615802
Battistone F, Petrosino A (2018) TGLSTM: A time based graph deep learning approach to gait recognition. Pattern Recogn Lett. https://doi.org/10.1016/j.patrec.2018.05.004
Batchuluun G, Naqvi RA, Kim W, Park KR (2018) Body-movement-based human identification using convolutional neural network. Expert Syst Appl 101:56–77. https://doi.org/10.1016/j.eswa.2018.02.016
Tong S, Fu Y, Yue X, Ling H (2018) Multi-view gait recognition based on a spatial-temporal deep neural network. IEEE Access 6:57583–57596. https://doi.org/10.1109/access.2018.2874073
Bouchrika I, Boukrouche A (2014) Markerless extraction of gait features using haar-like template for view-invariant biometrics. In Proceedings of 15th IEEE international conference on sciences and techniques of automatic control and computer engineering (STA), pp 519–524
Su Y, Feng Z, Xing M (2018) Spatio-temporal large margin nearest neighbor (St-Lmnn) based on riemannian features for individual identification. In: IEEE international conference on multimedia and expo (ICME), pp 1–6.https://doi.org/10.1109/icme.2018.8486532
Bouchrika I (2015) Parametric elliptic fourier descriptors for automated extraction of gait features for people identification. In: 12th international symposium on programming and systems (ISPS), pp 1–7
Ben Abdelkader C, Cutler R, Davis L (2002) Person identification using automatic height and stride estimation. In: Proceedings of 16th international conference on pattern recognition, vol 4, pp 377–380
Yam CY, Nixon MS, Carter JN (2004) Automated person recognition by walking and running via model-based approaches. Pattern Recogn 37(5):1057–1072. https://doi.org/10.1016/j.patcog.2003.09.012
Tafazzoli F, Safabakhsh R (2010) Model-based human gait recognition using leg and arm movements. Eng Appl Artif Intell 23(8):1237–1246
Yoo J-H, Nixon MS (2011) Automated markerless analysis of human gait motion for recognition and classification. ETRI J 33(2):259–266
Zhao G, Liu G, Li H, Pietikainen M (2006) 3D gait recognition using multiple cameras. In: 7th international conference on automatic face and gesture recognition (FGR06), pp 29–534
Collins RT, Gross R, Shi J (2002) Silhouette-based human identification from body shape and gait. In: Proceedings of the fifth IEEE international conference on automatic face and gesture recognition, pp 366–371
Kusakunniran W, Wu Q, Zhang J, Li H (2011) Speed-invariant gait recognition based on procrustes shape analysis using higher-order shape configuration. In: 18th IEEE international conference on image processing, pp 545–548. https://doi.org/10.1109/icip.2011.6116403
Goffredo M, Bouchrika I, Carter JN, Nixon MS (2010) Self-calibrating view-invariant gait biometrics. IEEE Trans Syst Man Cybern Part B Cybern 40(4):997–1008. https://doi.org/10.1109/TSMCB.2009.2031091
Kovac J, Struc V, Peer P (2017) Frame–based classification for cross-speed gait recognition. Multimed Tools Appl 99:1–23. https://doi.org/10.1007/s11042-017-5469-0
Tanawongsuwan R, Bobick A (2001) Gait recognition from time-normalized joint-angle trajectories in the walking plane. In: Proceedings of the IEEE computer society conference on computer vision and pattern recognition (CVPR), pp 726–731
Arora P, Hanmandlub M, Srivastava S (2015) Gait based authentication using gait information image features. Pattern Recogn Lett 68(2):336–342. https://doi.org/10.1016/j.patrec.2015.05.016
Verlekar TT, Correia PL, Soares LD (2017) View-invariant gait recognition system using a gait energy image decomposition method. IET Biometrics 6(4):299–306. https://doi.org/10.1049/iet-bmt.2016.0118
Mahfouf Z, Merouani HF, Bouchrika I, Harrati N (2018) Investigating the use of motion-based features from optical flow for gait recognition. Neurocomputing 283:140–149. https://doi.org/10.1016/j.neucom.2017.12.040
Jia S, Wang L, Li X (2015) View-invariant gait authentication based on silhouette contours analysis and view estimation. IEEE/CAA J Autom Sin 2(2):226–232. https://doi.org/10.1109/JAS.2015.7081662
Boulgouris NV, Plataniotis KN, Hatzinakos D (2004) Gait recognition using dynamic time warping. In: IEEE 6th workshop on multimedia signal processing
Murase H, Sakai R (1996) Moving object recognition in eigenspace representation: gait analysis and lip reading. Pattern Recogn Lett 17:155–162
Świtoński A, Michalczuk A, Josiński H, Polański A, Wojciechowski K (2012) Dynamic time warping in gait classification of motion capture data. Int J Comput Inf Eng 6(11):1289–1294
Park J, Lee Y, Ko H (2009) Dynamic time warping based identification using gabor feature of adaptive motion model for walking humans. Int J Control Autom Syst 7(5):817–823. https://doi.org/10.1007/s12555-009-0514-z
Thyagharajan KK, Kiruba Raji I (2018) A review of visual descriptors and classification techniques used in leaf species identification. Arch Comput Methods Eng. https://doi.org/10.1007/s11831-018-9266-3
Simonyan K, Zisserman A (2014) Two-stream convolutional networks for action recognition in videos. arXiv:1406.2199
Taigman Y, Yang M, Ranzato M, Wolf (2014) DeepFace: closing the gap to human-level performance in face verification. In: CVPR, 2014
Takemura N, Makihara Y, Muramatsu D, Echigo T, Yagi Y (2018) “Multi-view large population gait dataset and its performance evaluation for cross-view gait recognition. IPSJ Trans. Comput Vis Appl 10(4):1–14
Uddin MZ, Ngo TT, Makihara Y, Takemura N, Li X, Muramatsu D, Yagi Y (2018) The OU-ISIR large population gait database with real-life carried object and its performance evaluation. IPSJ Trans. Comput Visi Appl 10(1):5
Xu C, Makihara Y, Ogi G, Li X, Yagi Y, Lu J (2017) The OU-ISIR gait database comprising the large population dataset with age and performance evaluation of age estimation. IPSJ Trans Comput Vis Appl 9(24):1–14
Iwashita Y, Kurazume R, Stoica A (2014) Gait identification using invisible shadows: robustness to appearance changes. In: Fifth international conference on emerging security technologies, pp 34–39
Lopez-Fernandez D, Madrid-Cuevas FJ, Carmona-Poyato A, Marın-Jimnez MJ, Munoz Salinas R (2014) The AVA multi-view dataset for gait recognition. In: International workshop on activity monitoring by multiple distributed sensing, pp 26–39
Makihara Y, Mannami H, Tsuji A, Hossain MA, Sugiura K, Mori A, Yagi Y (2012) The OU-ISIR gait database comprising the treadmill dataset. IPSJ Trans Comput Vis Appl 4:53–62
Yin Y, Liu L, Sun X (2011) “SDUMLA-HMT: a multimodal biometric database. In: The 6th Chinese conference on biometric recognition (CCBR), LNCS 7098, Beijing, China, pp 260–268
Iwashita Y, Baba R, Ogawara K, Kurazume R (2010) Person identification from spatio-temporal 3D gait. In: International conference on emerging security technologies, pp 30–35
Yu S, Tan D, Tan T (2006) A framework for evaluating the effect of view angle, clothing and carrying condition on gait recognition. In: 18th international conference on pattern recognition (ICPR), pp 441–444
Gross R, Shi J (2001) The CMU motion of body (MoBo) database, Technical Report CMU-RI-TR-01-18, Robotics Institute, Pittsburgh
Johnson AY, Bobick AF (2001) A multi-view method for gait recognition using static body parameters. In: International conference on audio- and video-based biometric person authentication (AVBPA), pp 301–311
Little JJ, Boyd JE (1998) Recognizing people by their gait: the shape of motion. Videre J Comput Vis Res 1(2):1–32
Choi S, Kim J, Kim W, Kim C (2019) Skeleton-based gait recognition via robust frame-level matching. IEEE Trans Inf Forensics Secur. https://doi.org/10.1109/TIFS.2019.2901823
Khandelwal S, Wickstrom N (2017) Evaluation of the performance of accelerometer-based gait event detection algorithms in different real-world scenarios using the MAREA gait database. Gait Posture 51:84–90
Zhang Y, Pan G, Jia K, Lu M, Wang Y, Wu Z (2015) Accelerometer-based gait recognition by sparse representation of signature points with clusters. IEEE Trans Cybern 45(9):1864–1875. https://doi.org/10.1109/TCYB.2014.2361287
Chattopadhyay P, Sural S, Mukherjee J (2015) Frontal gait recognition from occluded scenes. Pattern Recogn Lett 63:9–15. https://doi.org/10.1016/j.patrec.2015.06.004
Deng M, Wang C (2018) Human gait recognition based on deterministic learning and data stream of Microsoft Kinect. IEEE Trans Circuits Syst Video Technol. https://doi.org/10.1109/TCSVT.2018.2883449
Bobick AF, Johnson AY (2001) Gait recognition using static, activity-specific parameters. In: Proceedings of the IEEE computer society conference on computer vision and pattern recognition (CVPR), vol 1, pp 423–430
Wagg DK, Nixon MS (2004) On automated model-based extraction and analysis of gait. In: Proceedings of Sixth IEEE international conference on automatic face and gesture recognition, pp 11–16
Bouchrika I, Nixon MS (2007) Model-based feature extraction for gait analysis and recognition. In: International conference on computer vision/computer graphics collaboration techniques and applications, pp 150–160
Urtasun R, Fua P (2004) 3D tracking for gait characterization and recognition. In: Proceedings of sixth IEEE international conference on automatic face and gesture recognition, pp 17–22
Junxia G, Ding X, Wang S, Youshou W (2010) Action and gait recognition from recovered 3-D human joints. IEEE Trans Syst Man Cybern Part B: Cybern 40(4):1021–1033. https://doi.org/10.1109/TSMCB.2010.2043526
Zhang X, Fan G (2010) Dual gait generative models for human motion estimation from a single camera. IEEE Tran Syst Man Cybern Part B Cybern 40(4):1034–1049. https://doi.org/10.1109/TSMCB.2010.2044240
Wang L, Ning H, Hu W, Tan T (2002) Gait recognition based on procrustes shape analysis. In: Proceeding of IEEE international conference on image processing (ICIP), pp 433–436
Shutler JD, Nixon MS (2006) Zernike velocity moments for sequence- based description of moving features. Image Vis Comput 24(4):343–356. https://doi.org/10.1016/j.imavis.2005.12.001
Shutler JD, Nixon MS, Harris CJ (2000) Statistical gait description via temporal moments. In: 4th IEEE southwest symposium on image analysis and interpretation, pp 291–295. https://doi.org/10.1109/iai.2000.839618
Veeraraghavan A, Chowdhury AR, Chellappa R (2004) Role of shape and kinematics in human movement analysis. In: IEEE computer society conference on computer vision and pattern recognition, pp I–I. https://doi.org/10.1109/cvpr.2004.1315104
Yu CC, Heng CH, Fan KC (2014) A gait classification system using optical flow features. Journal of Information Science and Engineering 30:179–193
Boulgouris NV, Plataniotis KN, Hatzinakos D (2006) Gait recognition using linear time normalization. Pattern Recogn 39(5):969–979. https://doi.org/10.1016/j.patcog.2005.10.013
Luo J, Zhang J, Zi C, Niu Y, Tian H, Xiu C (2015) Gait recognition using GEI and AFDEI. Int J Opt 215:763908. https://doi.org/10.1155/2015/763908
Bashir K, Xiang T, Gong S (2009) Gait recognition using Gait Entropy Image. In: 3rd international conference on imaging for crime detection and prevention, pp 1–6. https://doi.org/10.1049/ic.2009.0230
Kusakunniran W, Wu Q, Zhang J, Li H (2012) Gait recognition across various walking speeds using higher order shape configuration based on a differential composition model. IEEE Trans Syst Man Cybern B Cybern 42(6):1654–1668. https://doi.org/10.1109/TSMCB.2012.2197823
Rida I, Almaadeed S, Bouridane A (2016) Gait recognition based on modified phase-only correlation. Signal Image Video Process 10(3):463–470. https://doi.org/10.1007/s11760-015-0766-4
Yu S, Tan D, Tan T (2006) Modelling the effect of view angle variation on appearance-based gait recognition. In: Asian conference on computer vision (ACCV), pp 807–816. https://doi.org/10.1007/11612032_8
Kale A, Chowdhury AKR, Chellappa R (2003) Towards a view invariant gait recognition algorithm. In: IEEE conference on advanced video and signal based surveillance (AVSS), pp 143–150. https://doi.org/10.1109/avss.2003.1217914
Muramatsu D, Shiraishi A, Makihara Y, Uddin MZ, Yagi Y (2015) Gait-based person recognition using arbitrary view transformation model. IEEE Trans Image Process 24(1):140–154. https://doi.org/10.1109/TIP.2014.2371335
Bodor R, Drenner A, Fehr D, Masoud O, Papanikolopoulos N (2009) View-independent human motion classification using image-based reconstruction. Image Vis Comput 27:1194–1206. https://doi.org/10.1016/j.imavis.2008.11.008
Tang J, Luo J, Tjahjadi T, Guo F (2017) Robust arbitrary-view gait recognition based on 3D partial similarity matching. IEEE Trans Image Process 26(1):7–22. https://doi.org/10.1109/TIP.2016.2612823
Chen X, Yang T, Jiaming X (2014) Cross-view gait recognition based on human walking trajectory. J Vis Commun Image Represent 25:1842–1855. https://doi.org/10.1016/j.jvcir.2014.09.002
Zhao X, Jiang Y, Stathaki T, Zhang H (2016) Gait recognition method for arbitrary straight walking paths using appearance conversion machine. Neurocomputing 173:530–540. https://doi.org/10.1016/j.neucom.2015.07.012
Connie T, Goh MKO, Teoh ABJ (2017) A Grassmannian approach to address view change problem in gait recognition. IEEE Trans Cybern 47(6):1395–1408. https://doi.org/10.1109/TCYB.2016.2545693
Xu W, Zhu C, Wang Z (2018) Multiview max-margin subspace learning for cross-view gait recognition. Pattern Recogn Lett 107:75–82. https://doi.org/10.1016/j.patrec.2017.10.033
Ji N, Sanchez V, Li C-T (2018) On view-invariant gait recognition: a feature selection solution. IET Biom 7(4):287–295. https://doi.org/10.1049/iet-bmt.2017.0151
Zhang Z, Chen J, Qiang W, Shao L (2018) GII representation-based cross-view gait recognition by discriminative projection with list-wise constraints. IEEE Trans Cybern 48(10):2935–2947. https://doi.org/10.1109/TCYB.2017.2752759
Sharma H, Grover J (2018) Human identification based on gait recognition for multiple view angles. Int J Intell Robot Appl. https://doi.org/10.1007/s41315-018-0061-y
Sun J, Wang Y, Li J, Wan W, Cheng D, Zhang H (2018) View-invariant gait recognition based on kinect skeleton feature. Multimed Tools Appl 99:1–27. https://doi.org/10.1007/s11042-018-5722-1
Hossain MA, Makihara Y, Wang J, Yagi Y (2010) Clothing-invariant gait identification using part-based clothing categorization and adaptive weight control. Pattern Recogn 43:2281–2291. https://doi.org/10.1016/j.patcog.2009.12.020
Guan Y, Li C-T, Hu Y (2012) Robust clothing-invariant gait recognition. In: Eighth international conference on intelligent information hiding and multimedia signal processing, pp 321–324. https://doi.org/10.1109/iih-msp.2012.84
Islam MS, Islam MR, Akter MS, Hossain MA, Molla MKI (2013) Window Based clothing invariant gait recognition. In: 2nd international conference on advances in electrical engineering (ICAEE), pp 411–414. https://doi.org/10.1109/icaee.2013.6750373
Choudhury SD, Tjahjadi T (2015) Robust view-invariant multi-scale gait recognition. Pattern Recogn 48(3):798–811. https://doi.org/10.1016/j.patcog.2014.09.022
Rida I, Bouridane A, Marcialis GL, Tuveri P (2015) Improved human gait recognition. In: Proceeding international conference on image analysis and processing, pp 119–129
Yeoh T, Aguirre HE, Tanaka K (2016) Clothing-invariant gait recognition using convolutional neural network, pp 1–5. https://doi.org/10.1109/ispacs.2016.7824728
Chaurasia P, Yogarajah P, Condell J, Prasad G (2017) Fusion of random walk and discrete fourier spectrum methods for gait recognition. IEEE Trans Hum-Mach Syst 47(6):751–762. https://doi.org/10.1109/THMS.2017.2706658
Yu S, Chen H, Wang Q, Shen L, Huang Y (2017) Invariant feature extraction for gait recognition using only one uniform model. Neurocomputing 239:81–93. https://doi.org/10.1016/j.neucom.2017.02.006
Ghebleh A, Ebrahimi-Moghaddam M (2018) Clothing-invariant human gait recognition using an adaptive outlier detection method. Multimed Tools Appl 77:8237–8257. https://doi.org/10.1007/s11042-017-4712-z
Li X, Makihara Y, Chi X, Muramatsu D, Yagi Y, Ren M (2018) Gait energy response functions for gait recognition against various clothing and carrying status. Applied Sciences 8(8):1380. https://doi.org/10.3390/app8081380
Tsuji A, Makihara Y, Yagi Y (2010) Silhouette transformation based on walking speed for gait identification. In: IEEE computer society conference on computer vision and pattern recognition, pp 717–722. https://doi.org/10.1109/cvpr.2010.5540144
Iwashita Y, Sakano H, Kurazume R (2015) Gait recognition robust to speed transition using mutual subspace method. In: International conference on image analysis and processing (ICIAP), pp 141–149. https://doi.org/10.1007/978-3-319-23231-7
Cho N, Yuille AL, Lee S (2012) Self-occlusion robust 3D human pose tracking from monocular image sequence. In: IEEE International conference on systems, man and cybernatics, pp 254–257
Roy A, Sural S, Mukherjee J, Rigoll G (2011) Occlusion detection and gait silhouette reconstruction from degraded scenes. Signal Image Video Process 5:415–430. https://doi.org/10.1007/s11760-011-0245-5
Gafurov D, Nekkenes E, Bours P (2007) Spoof attacks on gait authentication system. IEEE Trans Inf Forensics Secur 2(3):491–502. https://doi.org/10.1109/TIFS.2007.902030
Gafurov D (2007) Secularity analysis of impostor attempts with respect gender in gait biometrics. In: IEEE international conference on biometrics: theory, applications, and systems, pp 1–6. https://doi.org/10.1109/btas.2007.4401905
Hadid A, Ghahramani M, Kellokumpu V, Pietikäinen M, Bustard J, Nixon M (2012) Can gait biometrics be spoofed?. In: 21st international conference on pattern recognition, pp 3280–3283
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Singh, J.P., Jain, S., Arora, S. et al. A Survey of Behavioral Biometric Gait Recognition: Current Success and Future Perspectives. Arch Computat Methods Eng 28, 107–148 (2021). https://doi.org/10.1007/s11831-019-09375-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11831-019-09375-3