Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Review on Near-Duplicate Detection of Images using Computer Vision Techniques

  • Original Paper
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

Nowadays, digital content is widespread and simply redistributable, either lawfully or unlawfully. For example, after images are posted on the internet, other web users can modify them and then repost their versions, thereby generating near-duplicate images. The presence of near-duplicates affects the performance of the search engines critically. Computer vision is concerned with the automatic extraction, analysis and understanding of useful information from digital images. The main application of computer vision is image understanding. There are several tasks in image understanding such as feature extraction, object detection, object recognition, image cleaning, image transformation, etc. There is no proper survey in literature related to near duplicate detection of images. In this paper, we review the state-of-the-art computer vision based approaches and feature extraction methods for the detection of near duplicate images. We also discuss the main challenges in this field and how other researchers addressed those challenges. This review provides research directions to the fellow researchers who are interested to work in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Jegou H, Douze M, Schmid C (2008) Hamming embedding and weak geometry consistency for large scale image search. In: Proceedings of the 10th European conference on computer vision. https://doi.org/10.1007/978-3-540-88682-2_24

  2. Jinda-Apiraksa A, Vonikakis V,Winkler S (2013) California-ND: an annotated dataset for near- duplicate detection in personal photo collections. In: Proceedings in 5th international workshop on quality of multimedia experience (QoMEX), Klagenfurt, Austria. https://doi.org/10.1109/QoMEX.2013.6603227

  3. Wen B, Zhu Y, Subramanian R, Ng TT, Shen X, Winkler S (2016) COVERAGE—a novel database for copy-move forgery Detection. In: IEEE international conference on image processing (ICIP), Phoenix, AZ, USA, pp 161–165. https://doi.org/10.1109/ICIP.2016.7532339

  4. Giuseppe Toys dataset. http://www.vision.caltech.edu/pmoreels/Datasets/Giuseppe_Toys_03/. Accessed 14 Jul 2018

  5. Chum O, Philbin J, Isard M, Zisserman A (2007) Scalable near identical image and shot detection. In: Proceedings of the 6th ACM international conference on image and video retrieval, pp 549–556. https://doi.org/10.1145/1282280.1282359

  6. Amruta Landge, Mane Pranoti (2016) Near duplicate image matching techniques. IEEE Int Conf Inf Commun Embed Syst ICICES. https://doi.org/10.1109/ICICES.2016.7518863

    Article  Google Scholar 

  7. Thajeel SA, Sulong GB (2013) State of the art of copy-move forgery detection techniques: a review. Int J Comput Sci Issues 10(6):174–183. https://doi.org/10.1109/ICCS1.2017.8325963

    Article  Google Scholar 

  8. Spyrou E, Mylonas P (2016) A survey on Flickr multimedia research challenges. Eng Appl Artif Intell. https://doi.org/10.1016/j.engappai.2016.01.006

    Article  Google Scholar 

  9. Ke Y, Sukthankar R, Huston L (2004) Efficient near-duplicate detection and sub-image retrieval. ACM Multimed 4(1):5

    Google Scholar 

  10. Chen L, Fred S (2006) Comparison of near-duplicate image matching. In: Proceedings of the 3rd European conference on visual media production. https://doi.org/10.1049/cp:20061969

  11. Foo JJ, Sinha R (2007a) Pruning SIFT for scalable near-duplicate image matching. In: Proceedings of the eighteenth conference on Australasian database, vol 63, pp 63–71. Australian Computer Society, Inc

  12. Foo JJ, Sinha R (2007b) Using redundant bit vectors for near-duplicate image detection. In: DASFAA, pp 472–484. https://doi.org/10.1007/978-3-540-71703-4_41

  13. Bay H, Ess A, Tuytelaars T, Van Gool L (2008) Speeded-up robust features (SURF). Comput Vis Image Underst 110(3):346–359

    Article  Google Scholar 

  14. Rublee E, Rabaud V, Konolige K, Bradski GR (2011) ORB: an efficient alternative to SIFT or SURF. In: ICCV, vol 11, no 1, p 2

  15. Cao, Y, Zhang H, Gao Y, Guo J (2010) An efficient duplicate image detection method based on Affine-SIFT feature. In: 3rd IEEE international conference on broadband network and multimedia technology (IC-BNMT), pp 794–797. https://doi.org/10.1109/ICBNMT.2010.5705199

  16. Yu Guoshen, Morel Jean-Michel (2011) ASIFT: an algorithm for fully affine invariant comparison. Image Process Line 1:11–38. https://doi.org/10.5201/ipol.2011

    Article  Google Scholar 

  17. Lindeberg T (2013) Scale selection properties of generalized scale-space interest point detectors. J Math Imaging Vis 46(2):177–210

    Article  MathSciNet  Google Scholar 

  18. Wang Y, Hou Z, Leman K (2011) Keypoint-based near-duplicate images detection using affine invariant feature and color matching. In: International conference in acoustics, speech and signal processing (ICASSP), pp 1209–1212. https://doi.org/10.1109/ICASSP.2011.5946627

  19. Tareen SAK, Saleem Z (2018) A comparative analysis of sift, surf, kaze, akaze, orb, and brisk. In: 2018 International conference on computing, mathematics and engineering technologies (iCoMET), pp 1–10. IEEE

  20. Foo JJ, Zobel J, Sinha R, Tahaghoghi SM (2007b) Detection of near-duplicate images for web search. In: Proceedings of the 6th ACM international conference on image and video retrieval, pp 557–564. https://doi.org/10.1145/1282280.1282360

  21. Zhang S, Tian Q, Lu K, Huang Q, Gao W (2013) Edge-SIFT: discriminative binary descriptor for scalable partial-duplicate mobile search. IEEE Trans Image Process 22(7):2889–2902. https://doi.org/10.1109/TIP.2013.2251650

    Article  Google Scholar 

  22. Muresan RC (2003) Pattern recognition using pulse-coupled neural networks and discrete Fourier transforms. Neurocomputing 51:487–493. https://doi.org/10.1016/S0925-2312(02)00727-0

    Article  Google Scholar 

  23. Zhang YD, Wu LN (2008) Pattern recognition via PCNN and Tsallis entropy. Sensors 8(11):7518–7529. https://doi.org/10.3390/s8117518

    Article  MathSciNet  Google Scholar 

  24. Ma Y, Wang Z, Wu C (2006) Feature extraction from noisy image using PCNN. In: Proceedings of the international conference on information acquisition, pp 808–813. https://doi.org/10.1109/icia.2006.305834

  25. Xiadong Gu (2008) Feature extraction using unit-linking pulse coupled neural network and its applications. Neural Process Lett 27:25–41. https://doi.org/10.1007/s11063-007-9057-6

    Article  Google Scholar 

  26. Forgac R, Mokris I (2008) Feature generation improving by optimised PCNN. In: Proceedings of 6th international symposium on applied machine intelligence and informatics, pp 203–207. https://doi.org/10.1109/sami.2008.4469166

  27. Hoang Trong-Thuc, Nguyen Ngoc-Hung, Nguyen Xuan-Thuan, Bui Trong-Tu (2012) A real-time image feature extraction using pulse-coupled neural network. Int J Emerg Trends Technol Comput Sci IJETICS 1(3):117–185

    Google Scholar 

  28. Mohammed MM, Abdelhalim MB, Badr A (2014) An optimised PCNN for image classification. In: 10th international computer engineering conference (ICENCO), Giza, pp 16–20. https://doi.org/10.1109/ICENCO.2014.7050425

  29. An L, Yin G, Gao X (2013) Graph matching with geometric constraints for near-duplicated image retrieval. In: Proceedings of the fifth international conference on internet multimedia computing and service, pp 174–177. ACM. https://doi.org/10.1145/2499788.2499847

  30. Zhang Y, Zhang Y, Sun J, Li H, Zhu Y (2018) Learning near duplicate image pairs using convolutional neural networks. Int J Perform Eng 14(1):168

    Google Scholar 

  31. Vonikakis V, Chrysostomou D, Kouskouridas R, Gasteratos A (2012) Improving the robustness in feature detection by local contrast enhancement. In: Imaging systems and techniques (IST), IEEE international conference, pp 158–163. https://doi.org/10.1109/ist.2012.6295482

  32. Vonikakis V, Chrysostomou D, Kouskouridas R, Gasteratos A (2013) A biologically inspired scale-space for illumination invariant feature detection. Meas Sci Technol 24(7):074024. https://doi.org/10.1088/0957-0233/24/7/074024

    Article  Google Scholar 

  33. Zhuang D, Zhang D, Li J, Tian Q (2015) Binary feature from intensity quantization and weakly spatial contextual coding for image search. Inf Sci 302:94–107. https://doi.org/10.1016/j.ins.2014.08.064

    Article  Google Scholar 

  34. Wu L, Liu J, Yu N, Li M (2008) Query oriented subspace shifting for near-duplicate image detection. In: IEEE international conference on multimedia and expo, pp 661–664. https://doi.org/10.1109/icme.2008.4607521

  35. Chum O, Philbin J, Zisserman A (2008) Near duplicate image detection: min-hash and tf-idf weighting. BMVC 810:812–815. https://doi.org/10.5244/C.22.50

    Article  Google Scholar 

  36. Huang Chun-Rong, Chen Chu-Song, Chung Pau-Choo (2008) Contrast context histogram-An efficient discriminating local descriptor for object recognition and image matching. Pattern Recognit 41:3071–3077. https://doi.org/10.1016/j.patcog.2008.03.013

    Article  MATH  Google Scholar 

  37. Zhao WL, Ngo CW (2009) Scale-rotation invariant pattern entropy for keypoint-based near- duplicate detection. IEEE Trans Image Process 18(2):412–423. https://doi.org/10.1109/tip.2008.2008900

    Article  MathSciNet  MATH  Google Scholar 

  38. Battiato S, Farinella GM, Guarnera GC, Meccio T, Puglisi G, Ravì D, Rizzo R (2010) Bags of phrases with codebooks alignment for near duplicate image detection. In: Proceedings of the 2nd ACM workshop on multimedia in forensics, security and intelligence, pp 65–70. https://doi.org/10.1145/1877972.1877991

  39. Sluzek A, Paradowski M, Duanduan Y (2010) Detection and segmentation of near-duplicate fragments in random images. In: Control automation robotics and vision (ICARCV), 11th international conference, pp 1161–1166. https://doi.org/10.1109/ICARCV.2010.5707294

  40. Cho A, Yang WK, Oh WG, Jeong DS (2010) Concentric circle based image signature for near-duplicate detection in large databases. ETRI J 32(6):871–880. https://doi.org/10.4218/etrij.10.0109.0623

    Article  Google Scholar 

  41. Ferrari V, Tuytelaars T, Van Gool L (2004) Simultaneous object recognition and segmentation by image exploration. In: European conference on computer vision, pp 40–54. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24670-1_4

  42. Jegou Herve, Douze Matthijs, Schmid Cordelia (2010) Improving bag-of-features for large scale image search. Int J Comput Vis 87(3):316–336. https://doi.org/10.1007/s11263-009-0285-2

    Article  Google Scholar 

  43. Nister D, Stewenius H (2006) Scalable recognition with a vocabulary tree. In: Proceedings of IEEE conference on computer vision and pattern recognition, pp 2161–2168. https://doi.org/10.1109/CVPR.2006.264

  44. Philbin J, Chum O, Isard M, Sivic J, Zisserman A (2007) Object retrieval with large vocabularies and fast spatial matching. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1–8. https://doi.org/10.1109/CVPR.2007.383172

  45. Philbin J, Chum O, Isard M, Sivic J, Zisserman A (2008) Lost in quantization: improving particular object retrieval in large scale image databases. In: Proceedings of IEEE conference on computer vision and pattern recognition, pp 1–8. https://doi.org/10.1109/cvpr.2008.4587635

  46. Xie H, Gao K, Zhang Y, Tang S, Li J, Liu Y (2011) Efficient feature detection and effective post-verification for large scale near-duplicate image search. IEEE Trans Multimed 13(6):1319–1332. https://doi.org/10.1109/tmm.2011.2167224

    Article  Google Scholar 

  47. Satoh SI (2011) Simple low-dimensional features approximating NCC-based image matching. Pattern Recognit Lett 32(14):1902–1911. https://doi.org/10.1016/j.patrec.2011.07.027

    Article  Google Scholar 

  48. Das SN, Mathew M, Vijayaraghavan PK (2012) An efficient approach for finding near duplicate web pages using minimum weight overlapping method. In: Ninth IEEE international conference in information technology: new generations (ITNG), pp 121–126. https://doi.org/10.1109/ITNG.2012.168

  49. Dong W, Wang Z, Charikar M, Li K (2012) High-confidence near-duplicate image detection. In: Proceedings of the 2nd ACM international conference on multimedia retrieval, p 1. https://doi.org/10.1145/2324796.2324798

  50. Bueno L, Valle E, da Torres SR (2012) Bayesian approach for near-duplicate image detection. In: Proceedings of 2nd ACM international conference on multimedia retrieval, pp 15. https://doi.org/10.1145/2324796.2324815

  51. Rakthanmanon T, Zhu Q, Keogh EJ (2012) Efficiently finding near duplicate figures in archives of historical documents. J Multimed 7(2):109–123

    Article  Google Scholar 

  52. Li P, Hanbing YAN, Gang CUI, Yuejin DU (2012) Near-duplicate image identification with geometric consistency verification. J Comput Inf Syst 9:3593–3603

    Google Scholar 

  53. Li Z, Feng X (2013) Near duplicate image detecting algorithm based on bag of visual word model. J Multimed 8(5):557–565. https://doi.org/10.4304/jmm.8.5.557-564

    Article  Google Scholar 

  54. Xie L, Tian Q, Zhou W, Zhang B (2014) Fast and accurate near-duplicate image search with affinity propagation on the ImageWeb. Comput Vis Image Underst. https://doi.org/10.1016/j.cviu.2013.12.011

    Article  Google Scholar 

  55. Nemirovskiy VB, Stoyanov AK (2014) Near-duplicate image recognition based on the rank distribution of the brightness clusters cardinality. Comput Opt 38(4):811–817. https://doi.org/10.18287/0134-2452-2014-38-4-811-817

    Article  Google Scholar 

  56. Lei Y, Zheng L, Huang J (2014) Geometric invariant features in the radon transform domain for near-duplicate image detection. Pattern Recognit 47(11):3630–3640. https://doi.org/10.1016/j.patcog.2014.05.009

    Article  MATH  Google Scholar 

  57. Li L, Yue L, Ching YS (2015) Variable-length signature for near-duplicate image matching. IEEE Trans Image Process 24(4):1282–1296. https://doi.org/10.1109/TIP.2015.2400229

    Article  MathSciNet  MATH  Google Scholar 

  58. Xie L, Wang J, Zhang B, Tian Q (2015) Fine-grained image search. IEEE Trans Multimed 17(5):636–647. https://doi.org/10.1109/tmm.2015.2408566

    Article  Google Scholar 

  59. Fan Y, Xing J, Hu W (2015) Load-balanced locality-sensitive hashing: a new method for efficient near duplicate image detection. In: IEEE international conference in image processing (ICIP), pp 53–57. https://doi.org/10.1109/ICIP.2015.7350758

  60. Sarkar R, Acton ST (2016) SLIDE: saliency guided image dictionary and image similarity evaluation. In: ICIP 2016, pp 216–220. https://doi.org/10.1109/icip.2016.7532350

  61. Kim S, Wang XJ, Zhang L, Choi S (2015) Near duplicate image discovery on one billion images. In: IEEE winter conference in applications of computer vision (WACV), pp 943–950. https://doi.org/10.1109/wacv.2015.130

  62. Haoran Xu, Yang Jianyu, Yuan Junsong (2016) Invariant multi-scale shape descriptor for object matching and recognition. IEEE Int Conf Image Process ICIP. https://doi.org/10.1109/ICIP.2016.7532436

    Article  Google Scholar 

  63. Hu Y, Cheng X, Chia LT, Xie X, Rajan D, Tan AH (2009) Coherent phrase model for efficient image near-duplicate retrieval. IEEE Trans Multimed 11(8):1434–1445. https://doi.org/10.1109/TMM.2009.2032676

    Article  Google Scholar 

  64. Zhang Shiliang, Tian Qi, Hua Gang, Zhou Wengang, Huang Qingming, Li Houqiang, Gao Wen (2011) Modeling spatial and semantic cues for large-scale near-duplicated image retrieval. Comput Vis Image Underst 115:403–414. https://doi.org/10.1016/j.cviu.2010.11.003

    Article  Google Scholar 

  65. Wu Z, Xu Q, Jiang S, Huang Q, Cui P, Li L (2010) Adding affine invariant geometric constraint for partial-duplicate image retrieval. In: 20th IEEE international conference in pattern recognition (ICPR), pp 842–845. https://doi.org/10.1109/ICPR.2010.212

  66. Cheng X, Hu Y, Chia LT (2011) Exploiting local dependencies with spatial-scale space (s-cube) for near-duplicate retrieval. Comput Vis Image Underst 115(6):750–758. https://doi.org/10.1016/j.cviu.2011.02.003

    Article  Google Scholar 

  67. Tong Wei, Li Fengjie, Jin Rong, Jain Anil (2012) Large-scale near-duplicate image retrieval by kernel density estimation. Int J Multimed Inf Retr 1:45–58. https://doi.org/10.1007/s13735-012-0012-6

    Article  Google Scholar 

  68. Zhou W, Li H, Lu Y, Wang M, Tian Q (2015) Visual word expansion and BSIFT verification for large-scale image search. Multimed Syst 21(3):245–254. https://doi.org/10.1007/s00530-013-0330-4

    Article  Google Scholar 

  69. Paradowski M, Durak M, Broda B (2014) Bag of words-quality issues of near-duplicate image retrieval. Mach Gr Vis 23(1):83–96

    Google Scholar 

  70. Yao J, Yang B, Zhu Q (2015) Near-duplicate image retrieval based on contextual descriptor. IEEE Signal Process Lett 22(9):1404–1408. https://doi.org/10.1109/LSP.2014.2377795

    Article  Google Scholar 

  71. Vitaladevuni S, Choi F, Prasad R, Natarajan P (2012) Detecting near-duplicate document images using interest point matching. In: 21st IEEE international conference on pattern recognition (ICPR), pp 347–350

  72. Liu L, Lu Y, Suen CY (2014) Near-duplicate document image matching: a graphical perspective. Pattern Recognit 47(4):1653–1663. https://doi.org/10.1016/j.patcog.2013.11.006

    Article  Google Scholar 

  73. Picard D (2016) Preserving local spatial information in image similarity using tensor aggregation of local features. In: ICIP, pp 201–205. https://doi.org/10.1109/ICIP.2016.7532347

  74. Zhou Z, Wang Y, Wu QJ, Yang CN, Sun X (2017) Effective and efficient global context verification for image copy detection. IEEE Trans Inf Forensics Secur. https://doi.org/10.1109/tifs.2016.2601065

    Article  Google Scholar 

  75. Ciptasari Rimba Whidiana, Rhee Kyung Hyune, Sakurai Kouichi (2013) Exploiting reference images for image splicing verification. Digit Investig 10(2013):246–258. https://doi.org/10.1016/j.diin.2013.06.014

    Article  Google Scholar 

  76. Amerini I, Ballan L, Caldelli R, Del Bimbo A, Serra G (2011) A SIFT-based forensic method for copy–move attack detection and transformation recovery. IEEE Trans Inf Forensics Secur 6(3):1099–1110. https://doi.org/10.1109/tifs.2011.2129512

    Article  Google Scholar 

  77. Muhammad G, Hussain M, Bebis G (2012) Passive copy move image forgery detection using undecimated dyadic wavelet transform. Digit Investig 9(1):49–57. https://doi.org/10.1016/j.diin.2012.04.004

    Article  Google Scholar 

  78. Christlein Vincent, Riess Christian, Jordan Johannes, CorinnaRiess Elli Angelopoulo (2012) An evaluation of popular copy-move forgery detection approaches. IEEE Trans Inf Forensics Secur 7(6):1841–1854. https://doi.org/10.1109/TIFS.2012.2218597

    Article  Google Scholar 

  79. Chang IC, Yu JC, Chang CC (2013) A forgery detection algorithm for exemplar- based inpainting images using multi-region relation. Image Vis Comput 31(1):57–71. https://doi.org/10.1016/j.imavis.2012.09.002

    Article  MathSciNet  Google Scholar 

  80. Foo JJ, Zobel J, Sinha R (2007a) Clustering near-duplicate images in large collections. In: Proceedings of the international workshop on multimedia information retrieval, pp 21–30. ACM. https://doi.org/10.1145/1290082.1290089

  81. Chang HC, Wang JH, Chiu CY (2007) Finding event-relevant content from the web using a near-duplicate detection approach. In: Proceedings of the IEEE/WIC/ACM international conference on web intelligence, pp 291–294. https://doi.org/10.1109/WI.2007.58

  82. Wu X, Ngo CW, Hauptmann AG (2008) Multimodal news story clustering with pairwise visual near-duplicate constraint. IEEE Trans Multimed 10(2):188–199. https://doi.org/10.1109/tmm.2007.911778

    Article  Google Scholar 

  83. Jean-Michel M, Yu G (2009) ASIFT: a new framework for fully affine invariant image comparison. SIAM J Imaging Sci 2:438–469. https://doi.org/10.1137/080732730

    Article  MathSciNet  MATH  Google Scholar 

  84. Wu Z, Ke Q, Isard M, Sun J (2009) Bundling features for large scale partial-duplicate web image search. In: IEEE conference in computer vision and pattern recognition, CVPR, pp 25–32. https://doi.org/10.1109/cvpr.2009.5206566

  85. Kalaiarasi G, Thyagharajan KK (2017) Clustering of near duplicate images using bundled features. Clust Comput J. https://doi.org/10.1007/s10586-017-1539-3

    Article  Google Scholar 

  86. Ponitz T, Stottinger J (2010) Efficient and robust near-duplicate detection in large and growing image data-sets. In: Proceedings of the 18th ACM international conference on multimedia, pp 1517–1518. https://doi.org/10.1145/1873951.1874268

  87. Zha ZJ, Tian Q, Cai J, Wang Z (2013) Interactive social group recommendation for Flickr photos. Neurocomputing 105:30–37. https://doi.org/10.1016/j.neucom.2012.06.039

    Article  Google Scholar 

  88. Kalaiarasi G, Thyagharajan KK (2013) Visual content based clustering of near duplicate web search images. In: The proceeding of IEEE international conference on green computing, communication and conservation of energy (ICGCE), India, pp 767–71. https://doi.org/10.1109/icgce.2013.6823537

  89. Hsieh L-C, Wu G-L, Hsu Y-M, Hsu W (2014) Online image search result grouping with MapReduce-based image clustering and graph construction for large-scale photos. J Vis Commun Image Represent 2:384–395. https://doi.org/10.1016/j.jvcir.2013.12.010

    Article  Google Scholar 

  90. Zhang Q, Qiu G (2015) Geometric consistent tree partitioning min-hash for large-scale partial duplicate image discovery. In: IEEE international conference in multimedia big data (BigMM), pp 220–227. https://doi.org/10.1109/bigmm.2015.38

  91. Corel Photo CD Collection: http://apps.corel.com/dell/paintshop/uk/photo_album_6/download.html. Accessed 8 May 2018

  92. MIRFlickr dataset: http://press.liacs.nl/mirflickr/. Accessed 8 May 2018

  93. Huiskes MJ, Lew MS (2008) The MIR Flickr retrieval evaluation. In: ACM international conference on multimedia information retrieval (MIR’08), Vancouver, Canada. https://doi.org/10.1145/1460096.1460104

  94. OXFORD Building dataset http://www.robots.ox.ac.uk/~vgg/data/oxbuildings/. Accessed 30 April 2018

  95. MM270K Dataset http://www.cs.cmu.edu/~yke/retrieval

  96. Columbia NDI Database: http://www.ee.columbia.edu/ln/dvmm/downloads/AuthSplicedDataSet/AuthSplicedDataSet.htm. Accessed 8 May 2018

  97. CityU Dataset: http://vireo.cs.cityu.edu.hk/research/ndk/ndk.html. Accessed 8 May 2018

  98. Xu D, Cham TJ, Yan S, Duan L, Chang SF (2010) Near duplicate identification with spatially aligned pyramid matching. IEEE Trans Circuits Syst Video Technol 20(8):1068–1079

    Article  Google Scholar 

  99. NTU Dataset: http://clarenceliang.com/dataset/NTU_Dataset.zip. Accessed 8 May 2018

  100. UKBench Dataset: http://www.vis.uky.edu/~stewe/ukbench. Accessed on 8 May 2018

  101. INRIA dataset http://lear.inrialpes.fr/~jegou/data.php. Accessed 8 May 2018

  102. Battiato S, Farinella GM, Puglisi G, Ravì D (2014) Aligning codebooks for near duplicate image detection. Multimed Tools Appl 72(2):1483–1506. https://doi.org/10.1007/s11042-013-1470-4

    Article  Google Scholar 

  103. California-ND Dataset: http://vintage.winklerbros.net/californiaND.html. Accessed 3 May 2018

  104. COpy-moVe forgERy dAtabase with similar but Genuine objects (COVERAGE).https://github.com/wenbiha/coverage.Accessed 4 May 2018

  105. Copy move forgery detection(CoMoFoD). http://www.vcl.fer.hr/comofod. Accessed 4 May 2018

  106. Dijana T, Zupancic I, Grgic S, Grgic M (2013) CoMoFoD: new database for copy- move forgery detection. In: Proceedings in 55th international symposium (ELMAR), pp 49–54

  107. CASIA Database: http://forensics.idealtest.org. Accessed 8 May 2018

  108. MICC-F220 and MICC-F2000: http://lci.micc.unifi.it/labd/2015/01/copy-move-forgery-detection-and-localization/.Accessed 8 May 2018

  109. Chu WT, Lin CH (2010) Consumer photo management and browsing facilitated by near-duplicate detection with feature filtering. J Vis Commun Image Represent 21(3):256–268. https://doi.org/10.1016/j.jvcir.2010.01.006

    Article  Google Scholar 

  110. Eshkol A, Grega M, Leszczuk M, Weintraub O (2014) Practical application of near duplicate detection for image database. In: International conference on multimedia communications, services and security, pp 73–82, Springer, Cham. https://doi.org/10.1007/978-3-319-07569-3_6

  111. Algur SP, Patil AP, Hiremath PS, Shivashankar S (2010) Conceptual level similarity measure based review spam detection. In: Signal and image processing (ICSIP), IEEE international conference, pp 416–423. https://doi.org/10.1109/ICSIP.2010.5697509

  112. Tang X (2012) Book retrieval based on near-duplicate image matching. In: Fuzzy systems and knowledge discovery (FSKD), 9th IEEE international conference, pp 2616–2619. https://doi.org/10.1109/FSKD.2012.6233792

  113. Zhang X, Zhang L, Wang XJ, Shum HY (2012) Finding celebrities in billions of web images. IEEE Trans Multimed 14(4):995–1007. https://doi.org/10.1109/TMM.2012.2186121

    Article  Google Scholar 

  114. Borovikov E, Vajda S, Lingappa G, Antani S, Thoma G (2013) Face matching for post-disaster family reunification. In: IEEE international conference on healthcare informatics (ICHI), pp 131–140. https://doi.org/10.1109/ICHI.2013.23

  115. Romberg S, Lienhart R (2013) Bundle min-hashing for logo recognition. In: Proceedings of the 3rd ACM conference on international conference on multimedia retrieval, pp 113–120. https://doi.org/10.1145/2461466.2461486

  116. Xie L, Tian Q, Zhang B (2014) Max-SIFT: Flipping invariant descriptors for web logo search. In: IEEE international conference in image processing (ICIP), pp 5716–5720. https://doi.org/10.1109/ICIP.2014.7026156

  117. Cui H, Yuan X, Zheng Y, Wang C (2016) Enabling secure and effective near-duplicate detection over encrypted in-network storage. IEEE INFOCOM—the 35th annual international conference in computer communications, pp 1–9. https://doi.org/10.1109/INFOCOM.2016.7524346

  118. Gadeski E, Le Borgne H, Popescu A (2017) Fast and robust duplicate image detection on the web. Multimed Tools Appl 76(9):11839–11858. https://doi.org/10.1007/s11042-016-3619-4

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. K. Thyagharajan.

Ethics declarations

Conflict of interest

The authors have no conflict of interest in publishing this article in Archives of Computational Methods in Engineering.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thyagharajan, K.K., Kalaiarasi, G. A Review on Near-Duplicate Detection of Images using Computer Vision Techniques. Arch Computat Methods Eng 28, 897–916 (2021). https://doi.org/10.1007/s11831-020-09400-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-020-09400-w