Abstract
Nowadays, digital content is widespread and simply redistributable, either lawfully or unlawfully. For example, after images are posted on the internet, other web users can modify them and then repost their versions, thereby generating near-duplicate images. The presence of near-duplicates affects the performance of the search engines critically. Computer vision is concerned with the automatic extraction, analysis and understanding of useful information from digital images. The main application of computer vision is image understanding. There are several tasks in image understanding such as feature extraction, object detection, object recognition, image cleaning, image transformation, etc. There is no proper survey in literature related to near duplicate detection of images. In this paper, we review the state-of-the-art computer vision based approaches and feature extraction methods for the detection of near duplicate images. We also discuss the main challenges in this field and how other researchers addressed those challenges. This review provides research directions to the fellow researchers who are interested to work in this field.
Similar content being viewed by others
References
Jegou H, Douze M, Schmid C (2008) Hamming embedding and weak geometry consistency for large scale image search. In: Proceedings of the 10th European conference on computer vision. https://doi.org/10.1007/978-3-540-88682-2_24
Jinda-Apiraksa A, Vonikakis V,Winkler S (2013) California-ND: an annotated dataset for near- duplicate detection in personal photo collections. In: Proceedings in 5th international workshop on quality of multimedia experience (QoMEX), Klagenfurt, Austria. https://doi.org/10.1109/QoMEX.2013.6603227
Wen B, Zhu Y, Subramanian R, Ng TT, Shen X, Winkler S (2016) COVERAGE—a novel database for copy-move forgery Detection. In: IEEE international conference on image processing (ICIP), Phoenix, AZ, USA, pp 161–165. https://doi.org/10.1109/ICIP.2016.7532339
Giuseppe Toys dataset. http://www.vision.caltech.edu/pmoreels/Datasets/Giuseppe_Toys_03/. Accessed 14 Jul 2018
Chum O, Philbin J, Isard M, Zisserman A (2007) Scalable near identical image and shot detection. In: Proceedings of the 6th ACM international conference on image and video retrieval, pp 549–556. https://doi.org/10.1145/1282280.1282359
Amruta Landge, Mane Pranoti (2016) Near duplicate image matching techniques. IEEE Int Conf Inf Commun Embed Syst ICICES. https://doi.org/10.1109/ICICES.2016.7518863
Thajeel SA, Sulong GB (2013) State of the art of copy-move forgery detection techniques: a review. Int J Comput Sci Issues 10(6):174–183. https://doi.org/10.1109/ICCS1.2017.8325963
Spyrou E, Mylonas P (2016) A survey on Flickr multimedia research challenges. Eng Appl Artif Intell. https://doi.org/10.1016/j.engappai.2016.01.006
Ke Y, Sukthankar R, Huston L (2004) Efficient near-duplicate detection and sub-image retrieval. ACM Multimed 4(1):5
Chen L, Fred S (2006) Comparison of near-duplicate image matching. In: Proceedings of the 3rd European conference on visual media production. https://doi.org/10.1049/cp:20061969
Foo JJ, Sinha R (2007a) Pruning SIFT for scalable near-duplicate image matching. In: Proceedings of the eighteenth conference on Australasian database, vol 63, pp 63–71. Australian Computer Society, Inc
Foo JJ, Sinha R (2007b) Using redundant bit vectors for near-duplicate image detection. In: DASFAA, pp 472–484. https://doi.org/10.1007/978-3-540-71703-4_41
Bay H, Ess A, Tuytelaars T, Van Gool L (2008) Speeded-up robust features (SURF). Comput Vis Image Underst 110(3):346–359
Rublee E, Rabaud V, Konolige K, Bradski GR (2011) ORB: an efficient alternative to SIFT or SURF. In: ICCV, vol 11, no 1, p 2
Cao, Y, Zhang H, Gao Y, Guo J (2010) An efficient duplicate image detection method based on Affine-SIFT feature. In: 3rd IEEE international conference on broadband network and multimedia technology (IC-BNMT), pp 794–797. https://doi.org/10.1109/ICBNMT.2010.5705199
Yu Guoshen, Morel Jean-Michel (2011) ASIFT: an algorithm for fully affine invariant comparison. Image Process Line 1:11–38. https://doi.org/10.5201/ipol.2011
Lindeberg T (2013) Scale selection properties of generalized scale-space interest point detectors. J Math Imaging Vis 46(2):177–210
Wang Y, Hou Z, Leman K (2011) Keypoint-based near-duplicate images detection using affine invariant feature and color matching. In: International conference in acoustics, speech and signal processing (ICASSP), pp 1209–1212. https://doi.org/10.1109/ICASSP.2011.5946627
Tareen SAK, Saleem Z (2018) A comparative analysis of sift, surf, kaze, akaze, orb, and brisk. In: 2018 International conference on computing, mathematics and engineering technologies (iCoMET), pp 1–10. IEEE
Foo JJ, Zobel J, Sinha R, Tahaghoghi SM (2007b) Detection of near-duplicate images for web search. In: Proceedings of the 6th ACM international conference on image and video retrieval, pp 557–564. https://doi.org/10.1145/1282280.1282360
Zhang S, Tian Q, Lu K, Huang Q, Gao W (2013) Edge-SIFT: discriminative binary descriptor for scalable partial-duplicate mobile search. IEEE Trans Image Process 22(7):2889–2902. https://doi.org/10.1109/TIP.2013.2251650
Muresan RC (2003) Pattern recognition using pulse-coupled neural networks and discrete Fourier transforms. Neurocomputing 51:487–493. https://doi.org/10.1016/S0925-2312(02)00727-0
Zhang YD, Wu LN (2008) Pattern recognition via PCNN and Tsallis entropy. Sensors 8(11):7518–7529. https://doi.org/10.3390/s8117518
Ma Y, Wang Z, Wu C (2006) Feature extraction from noisy image using PCNN. In: Proceedings of the international conference on information acquisition, pp 808–813. https://doi.org/10.1109/icia.2006.305834
Xiadong Gu (2008) Feature extraction using unit-linking pulse coupled neural network and its applications. Neural Process Lett 27:25–41. https://doi.org/10.1007/s11063-007-9057-6
Forgac R, Mokris I (2008) Feature generation improving by optimised PCNN. In: Proceedings of 6th international symposium on applied machine intelligence and informatics, pp 203–207. https://doi.org/10.1109/sami.2008.4469166
Hoang Trong-Thuc, Nguyen Ngoc-Hung, Nguyen Xuan-Thuan, Bui Trong-Tu (2012) A real-time image feature extraction using pulse-coupled neural network. Int J Emerg Trends Technol Comput Sci IJETICS 1(3):117–185
Mohammed MM, Abdelhalim MB, Badr A (2014) An optimised PCNN for image classification. In: 10th international computer engineering conference (ICENCO), Giza, pp 16–20. https://doi.org/10.1109/ICENCO.2014.7050425
An L, Yin G, Gao X (2013) Graph matching with geometric constraints for near-duplicated image retrieval. In: Proceedings of the fifth international conference on internet multimedia computing and service, pp 174–177. ACM. https://doi.org/10.1145/2499788.2499847
Zhang Y, Zhang Y, Sun J, Li H, Zhu Y (2018) Learning near duplicate image pairs using convolutional neural networks. Int J Perform Eng 14(1):168
Vonikakis V, Chrysostomou D, Kouskouridas R, Gasteratos A (2012) Improving the robustness in feature detection by local contrast enhancement. In: Imaging systems and techniques (IST), IEEE international conference, pp 158–163. https://doi.org/10.1109/ist.2012.6295482
Vonikakis V, Chrysostomou D, Kouskouridas R, Gasteratos A (2013) A biologically inspired scale-space for illumination invariant feature detection. Meas Sci Technol 24(7):074024. https://doi.org/10.1088/0957-0233/24/7/074024
Zhuang D, Zhang D, Li J, Tian Q (2015) Binary feature from intensity quantization and weakly spatial contextual coding for image search. Inf Sci 302:94–107. https://doi.org/10.1016/j.ins.2014.08.064
Wu L, Liu J, Yu N, Li M (2008) Query oriented subspace shifting for near-duplicate image detection. In: IEEE international conference on multimedia and expo, pp 661–664. https://doi.org/10.1109/icme.2008.4607521
Chum O, Philbin J, Zisserman A (2008) Near duplicate image detection: min-hash and tf-idf weighting. BMVC 810:812–815. https://doi.org/10.5244/C.22.50
Huang Chun-Rong, Chen Chu-Song, Chung Pau-Choo (2008) Contrast context histogram-An efficient discriminating local descriptor for object recognition and image matching. Pattern Recognit 41:3071–3077. https://doi.org/10.1016/j.patcog.2008.03.013
Zhao WL, Ngo CW (2009) Scale-rotation invariant pattern entropy for keypoint-based near- duplicate detection. IEEE Trans Image Process 18(2):412–423. https://doi.org/10.1109/tip.2008.2008900
Battiato S, Farinella GM, Guarnera GC, Meccio T, Puglisi G, Ravì D, Rizzo R (2010) Bags of phrases with codebooks alignment for near duplicate image detection. In: Proceedings of the 2nd ACM workshop on multimedia in forensics, security and intelligence, pp 65–70. https://doi.org/10.1145/1877972.1877991
Sluzek A, Paradowski M, Duanduan Y (2010) Detection and segmentation of near-duplicate fragments in random images. In: Control automation robotics and vision (ICARCV), 11th international conference, pp 1161–1166. https://doi.org/10.1109/ICARCV.2010.5707294
Cho A, Yang WK, Oh WG, Jeong DS (2010) Concentric circle based image signature for near-duplicate detection in large databases. ETRI J 32(6):871–880. https://doi.org/10.4218/etrij.10.0109.0623
Ferrari V, Tuytelaars T, Van Gool L (2004) Simultaneous object recognition and segmentation by image exploration. In: European conference on computer vision, pp 40–54. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24670-1_4
Jegou Herve, Douze Matthijs, Schmid Cordelia (2010) Improving bag-of-features for large scale image search. Int J Comput Vis 87(3):316–336. https://doi.org/10.1007/s11263-009-0285-2
Nister D, Stewenius H (2006) Scalable recognition with a vocabulary tree. In: Proceedings of IEEE conference on computer vision and pattern recognition, pp 2161–2168. https://doi.org/10.1109/CVPR.2006.264
Philbin J, Chum O, Isard M, Sivic J, Zisserman A (2007) Object retrieval with large vocabularies and fast spatial matching. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1–8. https://doi.org/10.1109/CVPR.2007.383172
Philbin J, Chum O, Isard M, Sivic J, Zisserman A (2008) Lost in quantization: improving particular object retrieval in large scale image databases. In: Proceedings of IEEE conference on computer vision and pattern recognition, pp 1–8. https://doi.org/10.1109/cvpr.2008.4587635
Xie H, Gao K, Zhang Y, Tang S, Li J, Liu Y (2011) Efficient feature detection and effective post-verification for large scale near-duplicate image search. IEEE Trans Multimed 13(6):1319–1332. https://doi.org/10.1109/tmm.2011.2167224
Satoh SI (2011) Simple low-dimensional features approximating NCC-based image matching. Pattern Recognit Lett 32(14):1902–1911. https://doi.org/10.1016/j.patrec.2011.07.027
Das SN, Mathew M, Vijayaraghavan PK (2012) An efficient approach for finding near duplicate web pages using minimum weight overlapping method. In: Ninth IEEE international conference in information technology: new generations (ITNG), pp 121–126. https://doi.org/10.1109/ITNG.2012.168
Dong W, Wang Z, Charikar M, Li K (2012) High-confidence near-duplicate image detection. In: Proceedings of the 2nd ACM international conference on multimedia retrieval, p 1. https://doi.org/10.1145/2324796.2324798
Bueno L, Valle E, da Torres SR (2012) Bayesian approach for near-duplicate image detection. In: Proceedings of 2nd ACM international conference on multimedia retrieval, pp 15. https://doi.org/10.1145/2324796.2324815
Rakthanmanon T, Zhu Q, Keogh EJ (2012) Efficiently finding near duplicate figures in archives of historical documents. J Multimed 7(2):109–123
Li P, Hanbing YAN, Gang CUI, Yuejin DU (2012) Near-duplicate image identification with geometric consistency verification. J Comput Inf Syst 9:3593–3603
Li Z, Feng X (2013) Near duplicate image detecting algorithm based on bag of visual word model. J Multimed 8(5):557–565. https://doi.org/10.4304/jmm.8.5.557-564
Xie L, Tian Q, Zhou W, Zhang B (2014) Fast and accurate near-duplicate image search with affinity propagation on the ImageWeb. Comput Vis Image Underst. https://doi.org/10.1016/j.cviu.2013.12.011
Nemirovskiy VB, Stoyanov AK (2014) Near-duplicate image recognition based on the rank distribution of the brightness clusters cardinality. Comput Opt 38(4):811–817. https://doi.org/10.18287/0134-2452-2014-38-4-811-817
Lei Y, Zheng L, Huang J (2014) Geometric invariant features in the radon transform domain for near-duplicate image detection. Pattern Recognit 47(11):3630–3640. https://doi.org/10.1016/j.patcog.2014.05.009
Li L, Yue L, Ching YS (2015) Variable-length signature for near-duplicate image matching. IEEE Trans Image Process 24(4):1282–1296. https://doi.org/10.1109/TIP.2015.2400229
Xie L, Wang J, Zhang B, Tian Q (2015) Fine-grained image search. IEEE Trans Multimed 17(5):636–647. https://doi.org/10.1109/tmm.2015.2408566
Fan Y, Xing J, Hu W (2015) Load-balanced locality-sensitive hashing: a new method for efficient near duplicate image detection. In: IEEE international conference in image processing (ICIP), pp 53–57. https://doi.org/10.1109/ICIP.2015.7350758
Sarkar R, Acton ST (2016) SLIDE: saliency guided image dictionary and image similarity evaluation. In: ICIP 2016, pp 216–220. https://doi.org/10.1109/icip.2016.7532350
Kim S, Wang XJ, Zhang L, Choi S (2015) Near duplicate image discovery on one billion images. In: IEEE winter conference in applications of computer vision (WACV), pp 943–950. https://doi.org/10.1109/wacv.2015.130
Haoran Xu, Yang Jianyu, Yuan Junsong (2016) Invariant multi-scale shape descriptor for object matching and recognition. IEEE Int Conf Image Process ICIP. https://doi.org/10.1109/ICIP.2016.7532436
Hu Y, Cheng X, Chia LT, Xie X, Rajan D, Tan AH (2009) Coherent phrase model for efficient image near-duplicate retrieval. IEEE Trans Multimed 11(8):1434–1445. https://doi.org/10.1109/TMM.2009.2032676
Zhang Shiliang, Tian Qi, Hua Gang, Zhou Wengang, Huang Qingming, Li Houqiang, Gao Wen (2011) Modeling spatial and semantic cues for large-scale near-duplicated image retrieval. Comput Vis Image Underst 115:403–414. https://doi.org/10.1016/j.cviu.2010.11.003
Wu Z, Xu Q, Jiang S, Huang Q, Cui P, Li L (2010) Adding affine invariant geometric constraint for partial-duplicate image retrieval. In: 20th IEEE international conference in pattern recognition (ICPR), pp 842–845. https://doi.org/10.1109/ICPR.2010.212
Cheng X, Hu Y, Chia LT (2011) Exploiting local dependencies with spatial-scale space (s-cube) for near-duplicate retrieval. Comput Vis Image Underst 115(6):750–758. https://doi.org/10.1016/j.cviu.2011.02.003
Tong Wei, Li Fengjie, Jin Rong, Jain Anil (2012) Large-scale near-duplicate image retrieval by kernel density estimation. Int J Multimed Inf Retr 1:45–58. https://doi.org/10.1007/s13735-012-0012-6
Zhou W, Li H, Lu Y, Wang M, Tian Q (2015) Visual word expansion and BSIFT verification for large-scale image search. Multimed Syst 21(3):245–254. https://doi.org/10.1007/s00530-013-0330-4
Paradowski M, Durak M, Broda B (2014) Bag of words-quality issues of near-duplicate image retrieval. Mach Gr Vis 23(1):83–96
Yao J, Yang B, Zhu Q (2015) Near-duplicate image retrieval based on contextual descriptor. IEEE Signal Process Lett 22(9):1404–1408. https://doi.org/10.1109/LSP.2014.2377795
Vitaladevuni S, Choi F, Prasad R, Natarajan P (2012) Detecting near-duplicate document images using interest point matching. In: 21st IEEE international conference on pattern recognition (ICPR), pp 347–350
Liu L, Lu Y, Suen CY (2014) Near-duplicate document image matching: a graphical perspective. Pattern Recognit 47(4):1653–1663. https://doi.org/10.1016/j.patcog.2013.11.006
Picard D (2016) Preserving local spatial information in image similarity using tensor aggregation of local features. In: ICIP, pp 201–205. https://doi.org/10.1109/ICIP.2016.7532347
Zhou Z, Wang Y, Wu QJ, Yang CN, Sun X (2017) Effective and efficient global context verification for image copy detection. IEEE Trans Inf Forensics Secur. https://doi.org/10.1109/tifs.2016.2601065
Ciptasari Rimba Whidiana, Rhee Kyung Hyune, Sakurai Kouichi (2013) Exploiting reference images for image splicing verification. Digit Investig 10(2013):246–258. https://doi.org/10.1016/j.diin.2013.06.014
Amerini I, Ballan L, Caldelli R, Del Bimbo A, Serra G (2011) A SIFT-based forensic method for copy–move attack detection and transformation recovery. IEEE Trans Inf Forensics Secur 6(3):1099–1110. https://doi.org/10.1109/tifs.2011.2129512
Muhammad G, Hussain M, Bebis G (2012) Passive copy move image forgery detection using undecimated dyadic wavelet transform. Digit Investig 9(1):49–57. https://doi.org/10.1016/j.diin.2012.04.004
Christlein Vincent, Riess Christian, Jordan Johannes, CorinnaRiess Elli Angelopoulo (2012) An evaluation of popular copy-move forgery detection approaches. IEEE Trans Inf Forensics Secur 7(6):1841–1854. https://doi.org/10.1109/TIFS.2012.2218597
Chang IC, Yu JC, Chang CC (2013) A forgery detection algorithm for exemplar- based inpainting images using multi-region relation. Image Vis Comput 31(1):57–71. https://doi.org/10.1016/j.imavis.2012.09.002
Foo JJ, Zobel J, Sinha R (2007a) Clustering near-duplicate images in large collections. In: Proceedings of the international workshop on multimedia information retrieval, pp 21–30. ACM. https://doi.org/10.1145/1290082.1290089
Chang HC, Wang JH, Chiu CY (2007) Finding event-relevant content from the web using a near-duplicate detection approach. In: Proceedings of the IEEE/WIC/ACM international conference on web intelligence, pp 291–294. https://doi.org/10.1109/WI.2007.58
Wu X, Ngo CW, Hauptmann AG (2008) Multimodal news story clustering with pairwise visual near-duplicate constraint. IEEE Trans Multimed 10(2):188–199. https://doi.org/10.1109/tmm.2007.911778
Jean-Michel M, Yu G (2009) ASIFT: a new framework for fully affine invariant image comparison. SIAM J Imaging Sci 2:438–469. https://doi.org/10.1137/080732730
Wu Z, Ke Q, Isard M, Sun J (2009) Bundling features for large scale partial-duplicate web image search. In: IEEE conference in computer vision and pattern recognition, CVPR, pp 25–32. https://doi.org/10.1109/cvpr.2009.5206566
Kalaiarasi G, Thyagharajan KK (2017) Clustering of near duplicate images using bundled features. Clust Comput J. https://doi.org/10.1007/s10586-017-1539-3
Ponitz T, Stottinger J (2010) Efficient and robust near-duplicate detection in large and growing image data-sets. In: Proceedings of the 18th ACM international conference on multimedia, pp 1517–1518. https://doi.org/10.1145/1873951.1874268
Zha ZJ, Tian Q, Cai J, Wang Z (2013) Interactive social group recommendation for Flickr photos. Neurocomputing 105:30–37. https://doi.org/10.1016/j.neucom.2012.06.039
Kalaiarasi G, Thyagharajan KK (2013) Visual content based clustering of near duplicate web search images. In: The proceeding of IEEE international conference on green computing, communication and conservation of energy (ICGCE), India, pp 767–71. https://doi.org/10.1109/icgce.2013.6823537
Hsieh L-C, Wu G-L, Hsu Y-M, Hsu W (2014) Online image search result grouping with MapReduce-based image clustering and graph construction for large-scale photos. J Vis Commun Image Represent 2:384–395. https://doi.org/10.1016/j.jvcir.2013.12.010
Zhang Q, Qiu G (2015) Geometric consistent tree partitioning min-hash for large-scale partial duplicate image discovery. In: IEEE international conference in multimedia big data (BigMM), pp 220–227. https://doi.org/10.1109/bigmm.2015.38
Corel Photo CD Collection: http://apps.corel.com/dell/paintshop/uk/photo_album_6/download.html. Accessed 8 May 2018
MIRFlickr dataset: http://press.liacs.nl/mirflickr/. Accessed 8 May 2018
Huiskes MJ, Lew MS (2008) The MIR Flickr retrieval evaluation. In: ACM international conference on multimedia information retrieval (MIR’08), Vancouver, Canada. https://doi.org/10.1145/1460096.1460104
OXFORD Building dataset http://www.robots.ox.ac.uk/~vgg/data/oxbuildings/. Accessed 30 April 2018
MM270K Dataset http://www.cs.cmu.edu/~yke/retrieval
Columbia NDI Database: http://www.ee.columbia.edu/ln/dvmm/downloads/AuthSplicedDataSet/AuthSplicedDataSet.htm. Accessed 8 May 2018
CityU Dataset: http://vireo.cs.cityu.edu.hk/research/ndk/ndk.html. Accessed 8 May 2018
Xu D, Cham TJ, Yan S, Duan L, Chang SF (2010) Near duplicate identification with spatially aligned pyramid matching. IEEE Trans Circuits Syst Video Technol 20(8):1068–1079
NTU Dataset: http://clarenceliang.com/dataset/NTU_Dataset.zip. Accessed 8 May 2018
UKBench Dataset: http://www.vis.uky.edu/~stewe/ukbench. Accessed on 8 May 2018
INRIA dataset http://lear.inrialpes.fr/~jegou/data.php. Accessed 8 May 2018
Battiato S, Farinella GM, Puglisi G, Ravì D (2014) Aligning codebooks for near duplicate image detection. Multimed Tools Appl 72(2):1483–1506. https://doi.org/10.1007/s11042-013-1470-4
California-ND Dataset: http://vintage.winklerbros.net/californiaND.html. Accessed 3 May 2018
COpy-moVe forgERy dAtabase with similar but Genuine objects (COVERAGE).https://github.com/wenbiha/coverage.Accessed 4 May 2018
Copy move forgery detection(CoMoFoD). http://www.vcl.fer.hr/comofod. Accessed 4 May 2018
Dijana T, Zupancic I, Grgic S, Grgic M (2013) CoMoFoD: new database for copy- move forgery detection. In: Proceedings in 55th international symposium (ELMAR), pp 49–54
CASIA Database: http://forensics.idealtest.org. Accessed 8 May 2018
MICC-F220 and MICC-F2000: http://lci.micc.unifi.it/labd/2015/01/copy-move-forgery-detection-and-localization/.Accessed 8 May 2018
Chu WT, Lin CH (2010) Consumer photo management and browsing facilitated by near-duplicate detection with feature filtering. J Vis Commun Image Represent 21(3):256–268. https://doi.org/10.1016/j.jvcir.2010.01.006
Eshkol A, Grega M, Leszczuk M, Weintraub O (2014) Practical application of near duplicate detection for image database. In: International conference on multimedia communications, services and security, pp 73–82, Springer, Cham. https://doi.org/10.1007/978-3-319-07569-3_6
Algur SP, Patil AP, Hiremath PS, Shivashankar S (2010) Conceptual level similarity measure based review spam detection. In: Signal and image processing (ICSIP), IEEE international conference, pp 416–423. https://doi.org/10.1109/ICSIP.2010.5697509
Tang X (2012) Book retrieval based on near-duplicate image matching. In: Fuzzy systems and knowledge discovery (FSKD), 9th IEEE international conference, pp 2616–2619. https://doi.org/10.1109/FSKD.2012.6233792
Zhang X, Zhang L, Wang XJ, Shum HY (2012) Finding celebrities in billions of web images. IEEE Trans Multimed 14(4):995–1007. https://doi.org/10.1109/TMM.2012.2186121
Borovikov E, Vajda S, Lingappa G, Antani S, Thoma G (2013) Face matching for post-disaster family reunification. In: IEEE international conference on healthcare informatics (ICHI), pp 131–140. https://doi.org/10.1109/ICHI.2013.23
Romberg S, Lienhart R (2013) Bundle min-hashing for logo recognition. In: Proceedings of the 3rd ACM conference on international conference on multimedia retrieval, pp 113–120. https://doi.org/10.1145/2461466.2461486
Xie L, Tian Q, Zhang B (2014) Max-SIFT: Flipping invariant descriptors for web logo search. In: IEEE international conference in image processing (ICIP), pp 5716–5720. https://doi.org/10.1109/ICIP.2014.7026156
Cui H, Yuan X, Zheng Y, Wang C (2016) Enabling secure and effective near-duplicate detection over encrypted in-network storage. IEEE INFOCOM—the 35th annual international conference in computer communications, pp 1–9. https://doi.org/10.1109/INFOCOM.2016.7524346
Gadeski E, Le Borgne H, Popescu A (2017) Fast and robust duplicate image detection on the web. Multimed Tools Appl 76(9):11839–11858. https://doi.org/10.1007/s11042-016-3619-4
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors have no conflict of interest in publishing this article in Archives of Computational Methods in Engineering.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Thyagharajan, K.K., Kalaiarasi, G. A Review on Near-Duplicate Detection of Images using Computer Vision Techniques. Arch Computat Methods Eng 28, 897–916 (2021). https://doi.org/10.1007/s11831-020-09400-w
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11831-020-09400-w