Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Emerging Principles for Treating Myelin Oligodendrocyte Glycoprotein Antibody-Associated Disease (MOGAD)

  • Published:
Current Treatment Options in Neurology Aims and scope Submit manuscript

Abstract

Purpose of review

Myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD) is a rare inflammatory disorder of the central nervous system that affects both adults and children. Neurologic disability is relapse-driven; therefore, early diagnosis and targeted treatment are critical for effective care. We review the new MOGAD diagnostic criteria and evidence for current acute and preventative therapies.

Recent findings

The International MOGAD Panel has released the first clinical, laboratory, and radiographic criteria for MOGAD diagnosis. These criteria set the stage for evaluating clinical investigations and designing future randomized clinical trials. Prior retrospective studies have evaluated multiple off-label agents for the acute care or prevention of MOGAD attacks, and prospective randomized clinical trials are now underway.

Summary

Acute MOGAD attacks are generally responsive to high-dose corticosteroids; however, early use of plasma exchange or intravenous immunoglobulin may be beneficial for severe attacks or cases lacking corticosteroid response. A slow corticosteroid taper may lower the risk of relapse. Preventative treatment has been typically limited to patients with a definitive relapsing disease. While there is no consensus on the choice or duration of treatment, multiple therapies have been retrospectively evaluated. Prospective placebo-controlled trials for interleukin-6 receptor inhibition and neonatal Fc receptor inhibition may open new frontiers for patient care.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Marignier R, Hacohen Y, Cobo-Calvo A, et al. Myelin-oligodendrocyte glycoprotein antibody-associated disease. Lancet Neurol. 2021;20:762–72.

    Article  CAS  PubMed  Google Scholar 

  2. Reindl M, Di Pauli F, Rostásy K, Berger T. The spectrum of MOG autoantibody-associated demyelinating diseases. Nat Rev Neurol. 2013;9:455–61.

    Article  CAS  PubMed  Google Scholar 

  3. Jurynczyk M, Messina S, Woodhall MR, et al. Clinical presentation and prognosis in MOG-antibody disease: a UK study. Brain. 2017;140:3128–38.

    Article  PubMed  Google Scholar 

  4. Cobo-Calvo A, Ruiz A, Rollot F, et al. Clinical features and risk of relapses in children and adults with MOGAD. Ann Neurol. 2021;89:30–41.

    Article  CAS  PubMed  Google Scholar 

  5. •• Banwell B, Bennett JL, Marignier R, et al. Diagnosis of myelin oligodendrocyte glycoprotein antibody-associated disease: International MOGAD Panel proposed criteria. Lancet Neurol. 2023;22:268–82. The diagnostic criteria proposed by the International MOGAD Panel are critical for understanding the diagnosis of MOGAD and will be used in the future to optimize the design of treatment trials.

  6. De Mol C, Wong Y, Van Pelt E, et al. The clinical spectrum and incidence of anti-MOG-associated acquired demyelinating syndromes in children and adults. Mult Scler J. 2020;26:806–14.

    Article  Google Scholar 

  7. O’Connell K, Hamilton-Shield A, Woodhall M, et al. Prevalence and incidence of neuromyelitis optica spectrum disorder, aquaporin-4 antibody-positive NMOSD and MOG antibody-positive disease in Oxfordshire, UK. J Neurol Neurosurg Psychiatry. 2020;91:1126–8.

    Article  PubMed  Google Scholar 

  8. Mealy MA, Wingerchuk DM, Palace J, Greenberg BM, Levy M. Comparison of relapse and treatment failure rates among patients with neuromyelitis optica: multicenter study of treatment efficacy. JAMA Neurol. 2014;71:324.

    Article  PubMed  Google Scholar 

  9. Sundaram S, Nair SS, Jaganmohan D, Unnikrishnan G, Nair M. Relapsing lumbosacral myeloradiculitis: an unusual presentation of MOG antibody disease. Mult Scler. 2020;26:509–11.

    Article  PubMed  Google Scholar 

  10. Budhram A, Mirian A, Le C, Hosseini-Moghaddam SM, Sharma M, Nicolle MW. Unilateral cortical FLAIR-hyperintense lesions in anti-MOG-associated encephalitis with seizures (FLAMES): characterization of a distinct clinico-radiographic syndrome. J Neurol. 2019;266:2481–7.

    Article  CAS  PubMed  Google Scholar 

  11. Cobo-Calvo A, Ayrignac X, Kerschen P, et al. Cranial nerve involvement in patients with MOG antibody–associated disease. Neurol Neuroimmunol Neuroinflamm. 2019;6:e543.

  12. Demuth S, Guillaume M, Bourre B, et al. Treatment regimens for neuromyelitis optica spectrum disorder attacks: a retrospective cohort study. J Neuroinflammation. 2022;19:62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hoftberger R, Guo Y, Flanagan EP, et al. The pathology of central nervous system inflammatory demyelinating disease accompanying myelin oligodendrocyte glycoprotein autoantibody. Acta Neuropathol. 2020;139:875–92.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Whittam DH, Karthikeayan V, Gibbons E, et al. Treatment of MOG antibody associated disorders: results of an international survey. J Neurol. 2020;267:3565–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bruijstens AL, Wendel EM, Lechner C, et al. E.U. paediatric MOG consortium consensus: part 5 - treatment of paediatric myelin oligodendrocyte glycoprotein antibody-associated disorders. Eur J Paediatr Neurol. 2020;29:41–53.

  16. Beck RW, Cleary PA, Anderson MM, et al. A randomized, controlled trial of corticosteroids in the treatment of acute optic neuritis. N Engl J Med. 1992;326:581–8.

    Article  CAS  PubMed  Google Scholar 

  17. Morrow SA, Fraser JA, Day C, et al. Effect of treating acute optic neuritis with bioequivalent oral vs intravenous corticosteroids: a randomized clinical trial. JAMA Neurol. 2018;75:690–6.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Chen JJ, Flanagan EP, Jitprapaikulsan J, et al. Myelin oligodendrocyte glycoprotein antibody (MOG-IgG)-positive optic neuritis: clinical characteristics, radiologic clues and outcome. Am J Ophthalmol. 2018;195:8–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Jarius S, Ruprecht K, Kleiter I, et al. MOG-IgG in NMO and related disorders: a multicenter study of 50 patients. Part 2: epidemiology, clinical presentation, radiological and laboratory features, treatment responses, and long-term outcome. J Neuroinflammation. 2016;13:280.

  20. Rode J, Pique J, Maarouf A, et al. Time to steroids impacts visual outcome of optic neuritis in MOGAD. J Neurol Neurosurg Psychiatry. 2023;94:309–13.

    Article  PubMed  Google Scholar 

  21. Stiebel-Kalish H, Hellmann MA, Mimouni M, et al. Does time equal vision in the acute treatment of a cohort of AQP4 and MOG optic neuritis? Neurol Neuroimmunol Neuroinflamm. 2019;6:e572.

  22. Kleiter I, Gahlen A, Borisow N, et al. Apheresis therapies for NMOSD attacks: a retrospective study of 207 therapeutic interventions. Neurol Neuroimmunol Neuroinflamm. 2018;5:e504.

  23. Bonnan M, Valentino R, Debeugny S, et al. Short delay to initiate plasma exchange is the strongest predictor of outcome in severe attacks of NMO spectrum disorders. J Neurol Neurosurg Psychiatry. 2018;89:346–51.

    Article  PubMed  Google Scholar 

  24. Ramanathan S, Mohammad S, Tantsis E, et al. Clinical course, therapeutic responses and outcomes in relapsing MOG antibody-associated demyelination. J Neurol Neurosurg Psychiatry. 2018;89(2):127–37.

    Article  PubMed  Google Scholar 

  25. Nosadini M, Eyre M, Giacomini T, et al. Early immunotherapy and longer corticosteroid treatment are associated with lower risk of relapsing disease course in pediatric MOGAD. Neurol Neuroimmunol Neuroinflamm. 2023;10:e200065.

  26. Camera V, Holm-Mercer L, Ali AAH, et al. Frequency of new silent MRI lesions in myelin oligodendrocyte glycoprotein antibody disease and aquaporin-4 antibody neuromyelitis optica spectrum disorder. JAMA Netw Open. 2021;4:e2137833.

  27. Fadda G, Banwell B, Waters P, et al. Silent new brain MRI lesions in children with MOG-antibody associated disease. Ann Neurol. 2021;89:408–13.

    Article  CAS  PubMed  Google Scholar 

  28. Lopez-Chiriboga AS, Sechi E, Buciuc M, et al. Long-term outcomes in patients with myelin oligodendrocyte glycoprotein immunoglobulin G–associated disorder. JAMA Neurol. 2020;77:1575.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Akaishi T, Misu T, Takahashi T, et al. Progression pattern of neurological disability with respect to clinical attacks in anti-MOG antibody-associated disorders. J Neuroimmunol. 2021;351:577467.

  30. • Satukijchai C, Mariano R, Messina S, et al. Factors associated with relapse and treatment of myelin oligodendrocyte glycoprotein antibody-associated disease in the United Kingdom. JAMA Netw Open. 2022;5:e2142780. This prospective multicenter cohort study provides valuable information on predicting the course of MOGAD.

  31. Waters P, Fadda G, Woodhall M, et al. Serial anti–myelin oligodendrocyte glycoprotein antibody analyses and outcomes in children with demyelinating syndromes. JAMA Neurol. 2020;77:82.

    Article  PubMed  Google Scholar 

  32. Lopez-Chiriboga AS, Majed M, Fryer J, et al. Association of MOG-IgG serostatus with relapse after acute disseminated encephalomyelitis and proposed diagnostic criteria for MOG-IgG-associated disorders. JAMA Neurol. 2018;75:1355–63.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Carta S, Cobo Calvo Á, Armangué T, et al. Significance of myelin oligodendrocyte glycoprotein antibodies in CSF: a retrospective multicenter study. Neurology. 2023;100:e1095–108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Redenbaugh V, Flanagan EP. Monoclonal antibody therapies beyond complement for NMOSD and MOGAD. Neurotherapeutics. 2022;19(3):808–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Al-Ani A, Chen JJ, Costello F. Myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD): current understanding and challenges. J Neurol. 2023;270:4132–50.

    Article  PubMed  Google Scholar 

  36. Chwalisz BK, Levy M. The treatment of myelin oligodendrocyte glycoprotein antibody disease: a state-of-the-art review. J Neuroophthalmol. 2022;42:292–6.

    Article  PubMed  Google Scholar 

  37. Chen JJ, Flanagan EP, Bhatti MT, et al. Steroid-sparing maintenance immunotherapy for MOG-IgG associated disorder. Neurology. 2020;95:e111–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hacohen Y, Wong YY, Lechner C, et al. Disease course and treatment responses in children with relapsing myelin oligodendrocyte glycoprotein antibody-associated disease. JAMA Neurol. 2018;75:478–87.

    Article  PubMed  PubMed Central  Google Scholar 

  39. •• Chen JJ, Huda S, Hacohen Y, et al. Association of maintenance intravenous immunoglobulin with prevention of relapse in adult myelin oligodendrocyte glycoprotein antibody–associated disease. JAMA Neurol. 2022;79:518–25. This study contains the largest multicenter experience with IVIg use for prevention of MOGAD relapses and underscores the promise of IVIg use as a maintenance therapy.

  40. Cobo-Calvo A, Sepúlveda M, Rollot F, et al. Evaluation of treatment response in adults with relapsing MOG-Ab-associated disease. J Neuroinflammation. 2019;16:134.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Damato V, Evoli A, Iorio R. Efficacy and safety of rituximab therapy in neuromyelitis optica spectrum disorders. JAMA Neurol. 2016;73:1342–1342.

    Article  PubMed  Google Scholar 

  42. Brancati S, Gozzo L, Longo L, Vitale DC, Drago F. Rituximab in multiple sclerosis: are we ready for regulatory approval? Front Immunol. 2021;12.

  43. Spagni G, Sun B, Monte G, et al. Efficacy and safety of rituximab in myelin oligodendrocyte glycoprotein antibody-associated disorders compared with neuromyelitis optica spectrum disorder: a systematic review and meta-analysis. J Neurol Neurosurg Psychiatry. 2023;94:62–9.

    Article  PubMed  Google Scholar 

  44. Nepal G, Kharel S, Coghlan MA, Rayamajhi P, Ojha R. Safety and efficacy of rituximab for relapse prevention in myelin oligodendrocyte glycoprotein immunoglobulin G (MOG-IgG)-associated disorders (MOGAD): a systematic review and meta-analysis. J Neuroimmunol. 2022;364:577812.

  45. Starvaggi Cucuzza C, Longinetti E, Ruffin N, et al. Sustained low relapse rate with highly variable B-cell repopulation dynamics with extended rituximab dosing intervals in multiple sclerosis. Neurol Neuroimmunol Neuroinflamm. 2023;10:e200056.

  46. Bruschi N, Malentacchi M, Malucchi S, et al. Tailoring rituximab according to CD27-positive B-cell versus CD19-positive B-cell monitoring in neuromyelitis optica spectrum disorder and MOG-associated disease: results from a single-center study. Neurol Ther. 2023;12:1375–83.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Barreras P, Vasileiou ES, Filippatou AG, et al. Long-term effectiveness and safety of rituximab in neuromyelitis optica spectrum disorder and MOG antibody disease. Neurology. 2022;99:e2504–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Durozard P, Rico A, Boutiere C, et al. Comparison of the response to rituximab between myelin oligodendrocyte glycoprotein and aquaporin-4 antibody diseases. Ann Neurol. 2020;87:256–66.

    Article  CAS  PubMed  Google Scholar 

  49. Cree BAC, Bennett JL, Kim HJ, et al. Inebilizumab for the treatment of neuromyelitis optica spectrum disorder (N-MOmentum): a double-blind, randomised placebo-controlled phase 2/3 trial. Lancet. 2019;394:1352–63.

    Article  CAS  PubMed  Google Scholar 

  50. Marignier R, Pittock SJ, Paul F, et al. AQP4-IgG-seronegative patient outcomes in the N-MOmentum trial of inebilizumab in neuromyelitis optica spectrum disorder. Mult Scler Relat Disord. 2022;57:103356.

  51. Sotirchos ES, Vasileiou ES, Salky R, et al. Treatment of myelin oligodendrocyte glycoprotein antibody associated disease with subcutaneous immune globulin. Mult Scler Relat Disord. 2022;57:103462.

  52. Bril V, Drużdż A, Grosskreutz J, et al. Safety and efficacy of rozanolixizumab in patients with generalised myasthenia gravis (MycarinG): a randomised, double-blind, placebo-controlled, adaptive phase 3 study. Lancet Neurol. 2023;22:383–94.

    Article  CAS  PubMed  Google Scholar 

  53. Bril V, Benatar M, Andersen H, et al. Efficacy and safety of rozanolixizumab in moderate to severe generalized myasthenia gravis: a phase 2 randomized control trial. Neurology. 2021;96:e853–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kaneko K, Sato DK, Nakashima I, et al. CSF cytokine profile in MOG-IgG+ neurological disease is similar to AQP4-IgG+ NMOSD but distinct from MS: a cross-sectional study and potential therapeutic implications. J Neurol Neurosurg Psychiatry. 2018;89:927–36.

    Article  PubMed  Google Scholar 

  55. Yamamura T, Kleiter I, Fujihara K, et al. Trial of satralizumab in neuromyelitis optica spectrum disorder. N Engl J Med. 2019;381:2114–24.

    Article  CAS  PubMed  Google Scholar 

  56. Zhang C, Zhang M, Qiu W, et al. Safety and efficacy of tocilizumab versus azathioprine in highly relapsing neuromyelitis optica spectrum disorder (TANGO): an open-label, multicentre, randomised, phase 2 trial. Lancet Neurol. 2020;19:391–401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. • Ringelstein M, Ayzenberg I, Lindenblatt G, et al. Interleukin-6 receptor blockade in treatment-refractory MOG-IgG–associated disease and neuromyelitis optica spectrum disorders. Neurol - Neuroimmunol Neuroinflammation. 2022;9:e1100. This study reports multicenter outcomes utilizing tocilizumab with note that an alternative IL-6 receptor blocker, satralizumab, is currently under evaluation in a clinical trial.

  58. Elsbernd PM, Hoffman WR, Carter JL, Wingerchuk DM. Interleukin-6 inhibition with tocilizumab for relapsing MOG-IgG associated disorder (MOGAD): a case-series and review. Mult Scler Relat Disord. 2021;48:102696.

  59. Rigal J, Pugnet G, Ciron J, Lépine Z, Biotti D. Off-label use of tocilizumab in neuromyelitis optica spectrum disorders and MOG-antibody-associated diseases: a case-series. Mult Scler Relat Disord. 2020;46:102483.

  60. Hayward-Koennecke H, Reindl M, Martin R, Schippling S. Tocilizumab treatment in severe recurrent anti-MOG-associated optic neuritis. Neurology. 2019;92:765–7.

    Article  PubMed  Google Scholar 

  61. Masuccio FG, Lo Re M, Bertolotto A, Capobianco M, Solaro C. Benign SARS-CoV-2 infection in MOG-antibodies associated disorder during tocilizumab treatment. Mult Scler Relat Disord. 2020;46:102592.

  62. Novi G, Gastaldi M, Franciotta D, Pesce G, Benedetti L, Uccelli A. Tocilizumab in MOG-antibody spectrum disorder: a case report. Mult Scler Relat Disord. 2019;27:312–4.

    Article  CAS  PubMed  Google Scholar 

  63. Nguyen L, Wang CX, Conger DL, Sguigna PV, Singh S, Greenberg BM. Subclinical optic neuritis in pediatric myelin oligodendrocyte glycoprotein antibody-associated disease. Mult Scler Relat Disord. 2023;76:104802.

  64. Corbali O, Chitnis T. Pathophysiology of myelin oligodendrocyte glycoprotein antibody disease. Front Neurol. 2023;14:1137998. https://doi.org/10.3389/fneur.2023.1137998.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Cobo-Calvo A, Ruiz A, Maillart E, et al. Clinical spectrum and prognostic value of CNS MOG autoimmunity in adults: the MOGADOR study. Neurology. 2018;90:e1858–69.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey L. Bennett MD, PhD.

Ethics declarations

Conflict of Interest

Dr. Wolf reports research grants from the Rocky Mountain Multiple Sclerosis Center, payments for clinical trials from Genentech, and honoraria for the creation of educational content from MedLink Neurology. Dr. Palace reports support for scientific meetings and honorariums for advisory work from Merck Serono, Novartis, Chugai, Alexion, Roche, Medimmune, Argenx, Vitaccess, UCB, Mitsubishi, Amplo, and Janssen; grants from Alexion, Argenx, Roche, Medimmune, and Amplo Biotechnology; patent ref P37347WO and licence agreement Numares multimarker MS diagnostics; shares in AstraZeneca. Her group has been awarded an ECTRIMS fellowship and a Sumaira Foundation grant to start later this year. A Charcot fellow worked in Oxford in 2019–2021. She acknowledges partial funding to the trust by highly specialized services from NHS England. She is on the medical advisory boards of the Sumaira Foundation and MOG project charities, is a member of the Guthy Jackon Foundation Charity, is on the board of the European Charcot Foundation and the steering committee of MAGNIMS and the UK NHSE IVIG Committee, chairman of the NHSE neuroimmunology patient pathway, an ECTRIMS council member on the educational committee since June 2023, and on the ABN advisory groups for MS and neuroinflammation and neuromuscular diseases. Dr. Bennett reports payment for consultation from MedImmune/Viela Bio/Horizon Therapeutics, Alexion, Chugai, Clene Nanomedicine, Genentech, Genzyme, Mitsubishi Tanabe Pharma, Reistone Biopharma, TG Therapeutics, Antigenomycs, and Roche; personal fees from AbbVie; research grants from Novartis, Mallinckrodt, and Alexion; and has a patent for Aquaporumab issued.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wolf, A.B., Palace, J. & Bennett, J.L. Emerging Principles for Treating Myelin Oligodendrocyte Glycoprotein Antibody-Associated Disease (MOGAD). Curr Treat Options Neurol 25, 437–453 (2023). https://doi.org/10.1007/s11940-023-00776-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11940-023-00776-1

Keywords