Abstract
In this paper, we are studying the application of techniques to solve constraint satisfaction problems (CSP) for designing mechanical systems. After situating CSPs within the array of search and combinatorial optimisation techniques, we propose to model the design space in the form of a state graph and demonstrate the suitability of the constraint approach to solve the model. The implementation of a CSP is illustrated by an example of the dimensioning of a cluster of gear wheels in the mechanical engineering industry. Finally, we draw attention to the complementarity of CSPs with other search and solution optimisation techniques and suggest a few integration possibilities.
Similar content being viewed by others
References
Aldanondo, M., Hadj-Hamou, K., Lamothe, J.: Product generic modelling for configuration : Requirement analysis and modelling elements, KOGAN PAGE, pp. 50–70, ISBN 1-9039-9643-0 (2003)
Barricelli, N., et al.: Esempi numerici di processi di evoluzione. Methodos: 45–68 (1954)
Bernard, A.: ‘Modèles et approches pour la conception et la production intégrées’, Revue APII - JESA, Vol. 34 - 2-3/2000, pp. 163–194, No. ISBN: 2-7462-01445 (2000)
Chandrasekaran, B.: Design Problem: a task analysis, AI Magazine, Vol.: Winter (1990)
Clerc, M.: L’optimisation par essaims particulaires. Versions paramétriques et adaptatives, Hermés Science (2005)
Cvijovic D., Klinowski J.: Taboo search—an approach to the multiple minima problem. Science 267, 664–666 (1995)
Daniel, M., Lucas, M.: Towards declarative geometric modeling in mechanics. In: Chedmail, P., Bocquet, J.C., Dornfeld, D (eds.) IDMME’96—Integrated Design andManufacturing, pp. 427–436. Kluwer, Dordrecht (1997)
Davis, E.: Constraint propagation with interval labels. Artif. Intell. 24.3 (1987)
Delobel F.: Résolution de systèmes de contraintes réelles non linéaires. Ph.D. Thesis Computer Science, Université de Nice Sophia Antipolis, France (2000)
Dorigo, M.: Optimization, learning and natural algorithms. Ph.D. Thesis, Politecnico di Milano, Italy (1992)
Dorigo, M., Stützle, T.: Ant Colony Optimization. MIT Press, Cambridge. ISBN 0-262-04219-3 (2004)
Falkenauer, E.: Genetic Algorithms and Grouping Problems, Chichester. Wiley, England. ISBN 978-0-471-97150-4 (1997)
Falting, B.: Arc consistency for continuous variables. Artif. Intell. 65(2) (1994)
Fischer, X., Sebastian, P., Zimmer, L.: A constraint based approach for design support system. In: Gero, J. (ed.) Design Computing and Cognition 2004 (DCC 04), Boston (2004)
Ilog. IlogCP, Reference Manual, Ilog, Gentilly, France (2006)
Hart, P.E., Nilsson, N.J., Raphael, B.: A formal basis for the heuristic determination of minimum cost paths. IEEE Trans. Syst. Sci. Cybern. SSC4 (2), 100–107 (1968)
Kirkpatrick S., Gelatt C.D., Vecchi M.P.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983)
Kota, S., Ward, A.C.: Functions, structures and constraints in conceptual design. Design Laboratory, Department of Mechanical Engineering and Applied Mechanics University of Michigan (1991)
Lauriere, J.L.: Un langage et un programme pour résoudre et énoncer des problèmes combinatoires: ALICE. Ph.D. Thesis, Paris 6 University, France (1976)
Lhomme, O.: Consistency techniques for numeric CSPs. In: 13th International Conference on Artif. Intelligence, pp. 232–238, Chambéry, France (1993)
Lhomme, O., Rueher, M.: Application des techniques CSP au raisonnement sur les intervalles, Revue d’intelligence artificielle, Dunod, vol. 11:3, pp. 283:311 (1997)
Mackworth A.K.: Consistency in networks of relations. Artif. Intell. 8(1), 99–118 (1997)
Montanari U.: Networks of constraints: fundamental properties and applications to pictureprocessing. Inf. Sci. 7, 95–132 (1974)
Moore R.E.: Interval Analysis. Prentice-Hall, Englewood Cliffs (1966)
Purvis, L.: A CBR integration from inception to productization. In: Proceedings of AAAI’98 Conference (1998)
Serré, P.: Cohérence de la spécification d’un objet de l’espace euclidien à n dimensions. Ph.D. Thesis, Ecole Centrale, Paris, France (2000)
Sveda, M.: Industrial measurement application development using case-based reasoning. In: Proc of Second International Conference on System (ICONS’07). IEEE Computer Society (2007)
Titus, N., Ramani, K.: Design space exploration using constraint satisfaction. In: Proeedings of IJCAI’05 (2005)
Vargas, C., Saucier, A., Albert, P., Yvars, P.A.: Knowledge modelisation and constraint propagation in a computer aided design system. In: Workshop notes Constraint Processing in CAD of the Third International Conference on Artif. Intelligence in Design, Lausanne, Switzerland, August (1994)
Wagner, M.R.: Understanding the ICAD System, edn. ICAD Inc (1990)
Waltz, D.: Generating Semantic Descriptions from Drawings of Scenes with Shadows. MIT, Massachusetts (1972)
Yannou, B., Harmel, G.: Use of constraint programming for design. In: ElMaraghy, H., ElMaraghy, W. (eds.) Advances in Design, Chap. 12. Springer, Heidelberg (2005)
Yvars, P.A.: Contribution à la représentation des connaissances en ingénierie intégrée de produits et de systèmes de production, Mémoire d’habilitation à diriger les recherches, INPG, Grenoble, January (2001)
Yvars, P.A.: Eléments pour une ingénierie supervisée par les contraintes. In: Proceedings Congrés Français de Mécanique CFM’05, UTT, Troyes, France (2005)
Yvars, P.A.: A three level architecture for knowledge representation in mechanical engineering. In: Proceedings of 6th International Conference on Integrated Design and Manufacturing in Mechanical Engineering, IDMME’06, Grenoble, France (2006)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Yvars, PA. Using constraint satisfaction for designing mechanical systems. Int J Interact Des Manuf 2, 161–167 (2008). https://doi.org/10.1007/s12008-008-0047-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12008-008-0047-3