Abstract
Multipoint covalent bonding of glucose oxidase (EC 1.1.3.4) to hydrophilic natural polymer dextran and optimization of procedures to obtain, with enhanced temperature and pH stabilities, were studied. Purified enzyme was conjugated with various molecular weight dextrans (17.5, 75, and188 kD) in a ratio of 20:1, 10:1, 1:1, 1:5, 1:10, 1:15, and 1:20. After 1 h of incubation at pH 7, the activities of purified enzyme and conjugates were determined at different temperatures (25°C, 30°C, 35°C, 40°C, 50°C, 60°C, 70°C, and 80°C), and the results were evaluated for thermal resistance. Increases in temperature from 25°C to 50°C did not change the activities of the conjugates. The conjugate, which was prepared with 75 kDa dextran in a molar ratio of 1:5, showed the highest thermal resistance and even the activity still remains at 80°C at pH 7.0. This conjugate also displayed activity in a wide pH range (pH 4.0–7.0) at high temperatures. Conjugate, which was synthesized with 75 kDa dextran in a molar ratio of 1:5, appears to be feasible and useful for biotechnological applications.






Similar content being viewed by others
References
Betancor, L., Fuantes, M., Dellamora-Ortiz, G., López-Gallego, F., Hidalgo, A., Alonso-Morales, N., et al. (2005). Journal of Molecular Catalysis. B Enzymatic, 32, 97–101.
de la Casa, R. M., Guisán, J. M., Sánchez-Montero, J. M., & Sinisterra, J. V. (2002). Enzyme and Microbial Technology, 32, 30–40.
Abian, O., Wilson, L., Mateo, C., Fernández-Lorente, G., Palomo, J. M., Fernández-Lafuente, R., et al. (2004). Journal of Molecular Catalysis. B Enzymatic, 19–20, 295–303.
Longo, M. A., & Combes, D. (1999). Journal of Chemical Technology and Biotechnology, 74, 25–32.
Christakopoulos, P., Kourentzi, E., Hatzinikolou, D. G., Claeyssens, M., Kekos, D., & Macris, B. J. (1998). Carbohydrate Research, 314, 95–99.
Lopez-Serrano, P., Cao, L., van Rantwijk, F., & Sheldon, R. A. (2002). Biotechnological Letters, 24, 1379–1383.
Sheldon, R. A., Schoevaart, R., & van Langen, L. M. (2005). Biocatalysis and Biotransformation, 23(3/4), 141–147.
Mislovicova, D., Michalkova, E., & Vikartovska, A. (2007). Process Biochemistry, 42, 704–709.
Betancor, L., López-Gallego, F., Hidalgo, A., Alonso-Morales, N., Fuentes, M., Fernández-Lafuente, R., et al. (2004). Journal of Biotechnology, 110, 201–207.
Fuentes, M., Segura, R. L., Abian, O., Betancor, L., Hidalgo, A., Mateo, C., et al. (2004). Proteomics, 4, 2602–2607.
Bolivar, J. M., Wilson, L., Ferrarotti, S. A., Guisán, J. M., Fernández-Lafuente, R., & Mateo, C. (2006). Journal of Biotechnology, 125, 85–94.
Irazoqui, G., Giacomini, C., Batista-Viera, F., & Brena, B. M. (2007). Journal of Molecular Catalysis B Enzymatic, 46, 43–51.
Gil, E. C., Colarte, A. I., EI Ghzaoi, A., Durand, D., Delarbe, J. L., & Battaille, B. (2008). European Journal of Pharmaceutics and Biopharmaceutics, 68, 319–329.
Karmarkar, S., Garber, R., Kluza, J., & Koberda, M. (2006). Journal of Pharmaceutical and Biomedical Analysis, 41, 1260–1267.
Zakhartsev, M., & Momeu, C. (2007). Journal of Chromatography B, 858, 151–158.
Simpson, C., Jordan, J., Gardiner, N. S., & Whiteley, C. (2007). Protein Expression and Purification, 51, 260–266.
Hecht, H. J., Kalisz, H. M., Hendle, J. H., & Schmid, R. D. (1993). Journal of Molecular Biology, 229, 153–172.
Malherbe, D. F., Du Toit, M., Cordero, R. R., Otero, P., van Rensburg, I., & Pretorius, S. (2003). Applied Microbiology and Biotechnology, 61, 502–511.
Wei, Y., Feng, X., Chen, X., Hou, W., & Zhu, J. J. (2008). Biosensors and Bioelectronics, 23, 925–931.
Zhu, M., Jiang, Z., & Jing, W. (2005). Sensors and Actuators B, 110, 382–389.
Topcu Sulak, M., Gokdogan, O., Gulce, A., & Gulce, H. (2006). Biosensors and Bioelectronics, 21, 1719–1726.
Bullen, R. A., Arnot, T. C., & Lakeman, J. B. (2006). Biosensors and Bioelectronics, 21, 2015–2045.
Sacco, D., Bonneaux, F., & Dellacherie, E. (1988). Journal of Biological Macromolecules, 10, 305–310.
Deshpande, S. S., & Rocco, R. M. (1994). Food Technology, 8, 146–150.
Park, E. H., Shin, Y. M., Lim, Y. Y., Kwon, T. H., Kim, D. H., & Yang, M. S. (2000). Journal of Biotechnology, 81, 35–44.
Dai, G., Li, J., & Jiang, L. (2002). Biointerfaces, 24, 171–176.
Ye, H. (2006). Analytical Biochemistry, 356, 76–85.
Dilgimen, A. S., Mustafaeva, Z., Demchenco, M., Kaneko, T., Osada, Y., & Mustafaev, M. (2001). Biomaterials, 22, 2383–2392.
Mislovicova, D., Masarova, J., Bucko, M., & Gemeiner, P. (2006). Enzyme and Microbial Technology, 39, 579–585.
Haouz, A., Twist, C., Zentz, C., de Kersabiec, A.-M., Pin, S., & Alpert, B. (1998). Chemical Physics Letters, 294, 197–203.
Khatun Haq, S., Ahmad, F., & Hasan Khan, R. (2003). Biochemical and Biophysical Research Communications, 303, 685–692.
Yoshimoto, M., Sato, M., Wang, S., Fukunaga, K., & Nakao, K. (2006). Biochemical Engineering Journal, 30, 158–163.
Acknowledgments
This research was supported by grants from T.R. Prime Ministry State Planning Organization (project number 25-DPT-07-04-01) and Yıldız Technical University BAPK (The Production of Medical Biosensors, project number 27-07-04-01).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Altikatoglu, M., Basaran, Y., Arioz, C. et al. Glucose Oxidase-dextran Conjugates with Enhanced Stabilities Against Temperature and pH. Appl Biochem Biotechnol 160, 2187–2197 (2010). https://doi.org/10.1007/s12010-009-8812-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12010-009-8812-8