Abstract
Grifola frondosa is an edible fungus with a variety of potential pharmacological activities. This study investigates the hypoglycemic, anti-diabetic nephritic, and antioxidant properties of G. frondosa polysaccharides in diet-streptozotocin-induced diabetic rats. After a 4-week treatment with 100 mg/kg of metformin and 200 mg/kg of one of four different G. frondosa polysaccharide mixtures (especially GFPS3 and GFPS4), diabetic rats had enhanced body weight and suppressed plasma glucose, indicating the hypoglycemic activities of the G. frondosa polysaccharides. G. frondosa polysaccharides regulated the level of serum creatinine, blood urea nitrogen, N-acetyl-β-d-glucosaminidase, and albuminuria; inhibited the serum levels of interleukin (IL)-2, IL-6, and TNF-α; and enhanced the serum levels of matrix metalloproteinase 9 and interferon-α, confirming their anti-diabetic nephritic activities. G. frondosa polysaccharides ameliorated the pathological alterations in the kidneys of diabetic rats. Moreover, G. frondosa polysaccharides modulated the serum levels of oxidant factors such as superoxide dismutase, glutathione peroxidase, catalase, malondialdehyde, and reactive oxygen species, revealing their antioxidant properties. Furthermore, the administration of G. frondosa polysaccharides inhibited nuclear factor kappa B activities in the serum and kidneys. All of the data revealed that the activation of nuclear factor kappa B plays a central role in G. frondosa polysaccharide-mediated anti-diabetic and anti-nephritic activities.
Similar content being viewed by others
References
Sheikh, B. A., Pari, L., Rathinam, A., & Chandramohan, R. (2015). Trans-anethole, a terpenoid ameliorates hyperglycemia by regulating key enzymes of carbohydrate metabolism in streptozotocin induced diabetic rats. Biochimie, 112, 57–65.
Kerner, W., & Bruckel, J. (2014). Definition, classification and diagnosis of diabetes mellitus. Experimental and Clinical Endocrinology & Diabetes, 122(7), 384–386.
Putakala, M., Gujjala, S., Nukala, S., & Desireddy, S. (2017). Beneficial effects of Phyllanthus amarus against high fructose diet induced insulin resistance and hepatic oxidative stress in male Wistar rats. Applied Biochemistry and Biotechnology, 183(3), 744–764.
Jiang, P., Dong, Z., Ma, B., Ni, Z., Duan, H., Li, X., Wang, B., Ma, X., Wei, Q., Ji, X., & Li, M. (2016). Effect of Vanadyl rosiglitazone, a new insulin-mimetic vanadium complexes, on glucose homeostasis of diabetic mice. Applied Biochemistry and Biotechnology, 180(5), 841–851.
Zhu, K., Kakehi, T., Matsumoto, M., Iwata, K., Ibi, M., Ohshima, Y., Zhang, J., Liu, J., Wen, X., Taye, A., Fan, C., Katsuyama, M., Sharma, K., & Yabe-Nishimura, C. (2015). NADPH oxidase NOX1 is involved in activation of protein kinase C and premature senescence in early stage diabetic kidney. Free Radical Biology & Medicine, 83, 21–30.
Fornoni, A., Ijaz, A., Tejada, T., & Lenz, O. (2008). Role of inflammation in diabetic nephropathy. Current Diabetes Reviews, 4(1), 10–17.
Yuan, H. D., Huang, B., & Chung, S. H. (2011). Protective effect of cinnamaldehyde on streptozotocin-induced damage in rat pancreatic β-cells. Food Science and Biotechnology, 20(5), 1271–1276.
Elsherbiny, N. M., El-Sherbiny, M., & Said, E. (2015). Amelioration of experimentally induced diabetic nephropathy and renal damage by nilotinib. Journal of Physiology and Biochemistry, 71(4), 635–648.
Wu, J. Q., Kosten, T. R., & Zhang, X. Y. (2013). Free radicals, antioxidant defense systems, and schizophrenia. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 46, 200–206.
Khatiwala, R. V., Zhang, S., Li, X., Devejian, N., Bennett, E. and Cai, C. (2018) Inhibition of p16(INK4A) to rejuvenate aging human cardiac progenitor cells via the upregulation of anti-oxidant and NFkappaB signal pathways. Stem cell reviews.
Suryavanshi, S. V., & Kulkarni, Y. A. (2017). NF-κβ: a potential target in the management of vascular complications of diabetes. Frontiers in Pharmacology, 8.
Kania, D. S., Gonzalvo, J. D., & Weber, Z. A. (2011). Saxagliptin: a clinical review in the treatment of type 2 diabetes mellitus. Clinical Therapeutics, 33(8), 1005–1022.
Scheen, A. (2007). Antidiabetic agents in subjects with mild dysglycaemia: prevention or early treatment of type 2 diabetes? Diabetes & Metabolism, 33(1), 3–12.
Salihu Shinkafi, T., Bello, L., Wara Hassan, S., & Ali, S. (2015). An ethnobotanical survey of antidiabetic plants used by Hausa-Fulani tribes in Sokoto, Northwest Nigeria. Journal of Ethnopharmacology, 172, 91–99.
Liu, C., Song, J., Teng, M., Zheng, X., Li, X., Tian, Y., Pan, M., Li, Y., Lee, R. J., & Wang, D. (2016). Antidiabetic and antinephritic activities of aqueous extract of Cordyceps militaris fruit body in diet-streptozotocin-induced diabetic Sprague Dawley rats. Oxidative Medicine and Cellular Longevity, 2016, 9685257.
Liu, C., Zeng, X., Li, Y., Ma, H., Song, J., Li, Y., Zhou, Y., Lee, R. J., & Wang, D. (2017). Investigation of hypoglycemic, hypolipidemic and antinephritic activities of Paecilomyces tenuipes N45 in diet/streptozotocin induced diabetic rats. Molecular Medicine Reports, 15(5), 2807–2813.
Du, L., Liu, C., Teng, M., Meng, Q., Lu, J., Zhou, Y., Liu, Y., Cheng, Y., Wang, D., & Teng, L. (2016). Anti-diabetic activities of Paecilomyces tenuipes N45 extract in alloxan-induced diabetic mice. Molecular Medicine Reports, 13(2), 1701–1708.
He, X., Wang, X., Fang, J., Chang, Y., Ning, N., Guo, H., Huang, L., Huang, X., & Zhao, Z. (2017). Polysaccharides in Grifola frondosa mushroom and their health promoting properties: a review. International Journal of Biological Macromolecules, 101, 910–921.
Kubo, K., & Nanba, H. (1997). Anti-hyperliposis effect of maitake fruit body (Grifola frondosa). I. Biological & Pharmaceutical Bulletin, 20(7), 781–785.
Hong, L., Xun, M., & Wutong, W. (2007). Anti-diabetic effect of an alpha-glucan from fruit body of maitake (Grifola frondosa) on KK-ay mice. The Journal of Pharmacy and Pharmacology, 59(4), 575–582.
Chen, Z., Tang, Y., Liu, A., Jin, X., Zhu, J., & Lu, X. (2017). Oral administration of Grifola frondosa polysaccharides improves memory impairment in aged rats via antioxidant action. Molecular Nutrition & Food Research, 61(11).
Zhu, H., Sheng, K., Yan, E., Qiao, J., & Lv, F. (2012). Extraction, purification and antibacterial activities of a polysaccharide from spent mushroom substrate. International Journal of Biological Macromolecules, 50(3), 840–843.
Song, J., Wang, Y., Liu, C., Huang, Y., He, L., Cai, X., Lu, J., Liu, Y., & Wang, D. (2016). Cordyceps militaris fruit body extract ameliorates membranous glomerulonephritis by attenuating oxidative stress and renal inflammation via the NF-kappaB pathway. Food & Function, 7(4), 2006–2015.
Cui, H., Chen, Y., Wang, S., Kai, G., & Fang, Y. (2011). Isolation, partial characterisation and immunomodulatory activities of polysaccharide from Morchella esculenta. Journal of the Science of Food and Agriculture, 91(12), 2180–2185.
Dong, Y., Jing, T., Meng, Q., Liu, C., Hu, S., Ma, Y., Liu, Y., Lu, J., Cheng, Y., Wang, D., & Teng, L. (2014). Studies on the antidiabetic activities of Cordyceps militaris extract in diet-streptozotocin-induced diabetic Sprague-Dawley rats. BioMed Research International, 2014, 160980.
Wang, J., Song, J., Wang, D., Zhang, N., Lu, J., Meng, Q., Zhou, Y., Wang, N., Liu, Y., Wang, D., & Teng, L. (2016). The anti-membranous glomerulonephritic activity of purified polysaccharides from Irpex lacteus Fr. International Journal of Biological Macromolecules, 84, 87–93.
Williams, M. E. (2005). Diabetic nephropathy: the proteinuria hypothesis. American Journal of Nephrology, 25(2), 77–94.
Rubattu, S., Pagliaro, B., Pierelli, G., Santolamazza, C., Castro, S. D., Mennuni, S., & Volpe, M. (2014). Pathogenesis of target organ damage in hypertension: role of mitochondrial oxidative stress. International Journal of Molecular Sciences, 16(1), 823–839.
Mahendran, G., Thamotharan, G., Sengottuvelu, S., & Bai, V. N. (2014). Anti-diabetic activity of Swertia corymbosa (Griseb.) Wight ex C.B. Clarke aerial parts extract in streptozotocin induced diabetic rats. Journal of Ethnopharmacology, 151(3), 1175–1183.
Ellis, E. N., & Good, B. H. (1991). Prevention of glomerular basement membrane thickening by aminoguanidine in experimental diabetes mellitus. Metabolism, 40(10), 1016–1019.
Hua, W., Huang, H. Z., Tan, L. T., Wan, J. M., Gui, H. B., Zhao, L., Ruan, X. Z., Chen, X. M., & Du, X. G. (2015). CD36 mediated fatty acid-induced podocyte apoptosis via oxidative stress. PLoS One, 10(5), e0127507.
Rolo, A. P., & Palmeira, C. M. (2006). Diabetes and mitochondrial function: role of hyperglycemia and oxidative stress. Toxicology and Applied Pharmacology, 212(2), 167–178.
Tang, Z., Gao, H., Wang, S., Wen, S., & Qin, S. (2013). Hypolipidemic and antioxidant properties of a polysaccharide fraction from Enteromorpha prolifera. International Journal of Biological Macromolecules, 58, 186–189.
Lo, C. S., Shi, Y. X., Chenier, I., Ghosh, A., Wu, C. H., Cailhier, J. F., Ethier, J., Lattouf, J. B., Filep, J. G., Ingelfinger, J. R., Zhang, S. L., & Chan, J. S. D. (2017). Heterogeneous nuclear ribonucleoprotein F stimulates Sirtuin-1 gene expression and attenuates nephropathy progression in diabetic mice. Diabetes, 66(7), 1964–1978.
Sebai, H., Selmi, S., Rtibi, K., Souli, A., Gharbi, N., & Sakly, M. (2013). Lavender (Lavandula stoechas L.) essential oils attenuate hyperglycemia and protect against oxidative stress in alloxan-induced diabetic rats. Lipids in Health and Disease, 12(1), 189.
Bertelli, R., Di Donato, A., Cioni, M., Grassi, F., Ikehata, M., Bonanni, A., Rastaldi, M. P., & Ghiggeri, G. M. (2014). LPS nephropathy in mice is ameliorated by IL-2 independently of regulatory T cells activity. PLoS One, 9(10), e111285.
Peters, T., Bloch, W., Wickenhauser, C., Tawadros, S., Oreshkova, T., Kess, D., Krieg, T., Muller, W., & Scharffetter-Kochanek, K. (2006). Terminal B cell differentiation is skewed by deregulated interleukin-6 secretion in beta2 integrin-deficient mice. Journal of Leukocyte Biology, 80(3), 599–607.
Eilenberg, W., Stojkovic, S., Piechota-Polanczyk, A., Kaider, A., Kozakowski, N., Weninger, W. J., Nanobachvili, J., Wojta, J., Huk, I., Demyanets, S., & Neumayer, C. (2017). Neutrophil gelatinase associated lipocalin (NGAL) is elevated in type 2 diabetics with carotid artery stenosis and reduced under metformin treatment. Cardiovascular Diabetology, 16(1), 98.
Li, S., Zhang, Y., & Zhao, J. (2007). Preparation and suppressive effect of astragalus polysaccharide in glomerulonephritis rats. International Immunopharmacology, 7(1), 23–28.
Zhang, S., Xin, H., Li, Y., Zhang, D., Shi, J., Yang, J., & Chen, X. (2013). Skimmin, a coumarin from Hydrangea paniculata, slows down the progression of membranous glomerulonephritis by anti-inflammatory effects and inhibiting immune complex deposition. Evidence-based complementary and alternative medicine. eCAM, 2013, 819296.
Pan, P., Wang, Y. J., Han, L., Liu, X., Zhao, M., & Yuan, Y. F. (2010). Effects of sodium houttuyfonate on expression of NF-kappaB and MCP-1 in membranous glomerulonephritis. Journal of Ethnopharmacology, 131(1), 203–209.
Manna, P., Das, J., Ghosh, J., & Sil, P. C. (2010). Contribution of type 1 diabetes to rat liver dysfunction and cellular damage via activation of NOS, PARP, IkappaBalpha/NF-kappaB, MAPKs, and mitochondria-dependent pathways: prophylactic role of arjunolic acid. Free Radical Biology & Medicine, 48(11), 1465–1484.
Rashid, S., Nafees, S., Siddiqi, A., Vafa, A., Afzal, S. M., Parveen, R., Ali, N., Hasan, S. K., Barnwal, P., Shahid, A., & Sultana, S. (2017). Partial protection by 18beta glycrrhetinic acid against cisplatin induced oxidative intestinal damage in Wistar rats: possible role of NFkB and caspases. Pharmacological Reports : PR, 69(5), 1007–1013.
Oh, S. W., Lee, Y. M., Kim, S., Chin, H. J., Chae, D. W., & Na, K. Y. (2014). Cobalt chloride attenuates oxidative stress and inflammation through NF-kappaB inhibition in human renal proximal tubular epithelial cells. Journal of Korean Medical Science, 29(Suppl 2), S139–S145.
Methacanon, P., Madla, S., Kirtikara, K., & Prasitsil, M. (2005). Structural elucidation of bioactive fungi-derived polymers. Carbohydrate Polymers, 60(2), 199–203.
Acknowledgements
This work is supported by the Project from Health and Family Planning Commission Project from Jiangsu province (no. H201536) and Scientific Research Program of the Affiliated Hospital of Jiangsu University in China (no. jdfyRC-2015004).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of Interest
The authors have declared that there is no conflict of interest.
Rights and permissions
About this article
Cite this article
Kou, L., Du, M., Liu, P. et al. Anti-Diabetic and Anti-Nephritic Activities of Grifola frondosa Mycelium Polysaccharides in Diet-Streptozotocin-Induced Diabetic Rats Via Modulation on Oxidative Stress. Appl Biochem Biotechnol 187, 310–322 (2019). https://doi.org/10.1007/s12010-018-2803-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12010-018-2803-6