Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Purification, Biochemical Characterization, and Facile Immobilization of Laccase from Sphingobacterium ksn-11 and its Application in Transformation of Diclofenac

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

A Publisher Correction to this article was published on 17 July 2020

This article has been updated

Abstract

An extracellular laccase enzyme secreted from Sphingobacterium ksn-11 was purified to electrophoretic homogeneity, showing a molecular weight of 90 kDa. The purified enzyme was monomeric in nature confirmed by sodium dodecyl gel electrophoresis. The optimum temperature and pH were found to be 40 °C and 4.5 respectively. The enzyme showed highest substrate specificity for 2,2 azino-bis (ethylthiozoline-6-sulfonate) (ABTS), followed by syringaldazine. The Km value for ABTS was 2.12 mM with a Vmax value of 33.33 U/mg which was higher when compared with syringaldazine and guaiacol substrates. Sodium azide and EDTA inhibited the activity by 30%, whereas presence of Ca2+ and iron increased activity by 50%. The purified enzyme was immobilized in sodium alginate-silicon dioxide-polyvinyl alcohol beads and evaluated for diclofenac transformation studies. LC-MS analysis confirmed that immobilized laccase transformed diclofenac to 4-OH diclofenac after 4 h of incubation. 45 % of diclofenac was able to transform even at 3rd cycle of immobilized laccase use. Therefore, immobilized laccase can be used to transform or degrade several recalcitrant compounds from industrial effluents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Change history

  • 17 July 2020

    The original version of this article unfortunately contained a mistake in the equation under “Immobilized Laccase Activity and its Storage Stability” section.

References

  1. Gupta, V., Balda, S., Gupta, N., & Sharma, P. (2019). Functional substitution of domain 3 (T1 copper center) of a novel laccase with Cu ions. International Journal of Biological Macromolecules, 123, 1052–1061.

    CAS  PubMed  Google Scholar 

  2. Mtibaà, R., Barriuso, J., Eugenio, D. L., Aranda, E., Belbahri, L., & Nasri, M. (2018). Purification and characterization of a fungal laccase from the ascomycete Thielavia sp. and its role in the decolorization of a recalcitrant dye. International Journal of Biological Macromolecules, 120, 1744–1751.

    PubMed  Google Scholar 

  3. Tonin, F., Melis, R., Cordes, A., Sanchez-amat, A., Pollegioni, L., Rosini, E., et al. (2016). Comparison of different microbial laccases as tools for industrial uses. New Biotechnology, 33(3), 387–398.

    CAS  PubMed  Google Scholar 

  4. Wu, X., Hu, Y., Jin, J., Zhou, N., Wu, P., & Zhang, H. (2010). Electrochemical approach for detection of extracellular oxygen released from erythrocytes based on graphene film integrated with laccase and 2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid). Analytical Chemistry, 82(9), 3588–3596.

    CAS  PubMed  Google Scholar 

  5. Telke, A. A., Ghodake, G. S., Kalyani, D. C., Dhanve, R. S., & Govindwar, S. P. (2011). Biochemical characteristics of a textile dye degrading extracellular laccase from a Bacillus sp . ADR. Bioresource Technology, 102, 1752–1761.

    CAS  PubMed  Google Scholar 

  6. Rocha-pe, M. A., Gal, L. J., C-Iracheta, M. M., & Aut, U. (2016). A Pycnoporus sanguineus laccase for denim bleaching and its comparison with an enzymatic commercial formulation. Journal of Environmental Management, 177, 93–100.

    Google Scholar 

  7. Neelkant, K. S., Shankar, K., Jayalakshmi, S., & Sreeramulu, K. (2019). Optimization of conditions for the production of lignocellulolytic enzymes by Sphingobacterium sp. ksn-11 utilizing agro-wastes under submerged condition. Preparative Biochemistry & Biotechnology, 49(9), 927–934.

    CAS  Google Scholar 

  8. Chandra, R., & Choudhary, P. (2015). Properties of bacerial laccase and their application in bioremediationof industrial wastes. Environmental Science: Processes & Impacts, 17, 326–342.

    CAS  Google Scholar 

  9. Lassouane, F., Aït-amar, H., Amrani, S., & Rodriguez-couto, S. (2019). A promising laccase immobilization approach for Bisphenol A removal from aqueous solutions. Bioresource Technology, 271, 360–367.

    CAS  PubMed  Google Scholar 

  10. Sharma, B., Dangi, A. K., & Shukla, P. (2018). Contemperory enzyme based technologies for bioremediation- a review. Journal of Environmental Management, 210, 10–22.

    CAS  PubMed  Google Scholar 

  11. Sizhu, R., Jiang, Y., Bilal, M., & Cui, J. (2019). Recent progress in multienzymes co-immobilization and multienzyme system applications. Chemical Engineering Journal, 373, 1254–1278.

    Google Scholar 

  12. Wu, X., Xiong, J., Huang, Z., & Lou, W. (2019). Improving bio catalysis of cefaclor with penicillin acyclase immobilized on magnetic nanocrystalline cellulose in deep eutectic solvent-based co-solvent. Bioresource Technology, 288, 121548.

    CAS  PubMed  Google Scholar 

  13. Cui, J., & Jia, S. (2017). Organic-inorganic hybrid nanoflowers: a novel host platform for immobilizing molecules. Coordination Chemistry Reviews, 352, 249–273.

    CAS  Google Scholar 

  14. Wu, X., & Hou, M. (2015). Metal organic frame works and inorganic nanoflowers: a type of emerging in organic crystal nano carriers for enzyme immobilization. Catalysis Science & Technology, 5, 5077–5085.

    CAS  Google Scholar 

  15. Wu, X., Hou, M., Yue, H., & Je, G. (2019). Packaging and delivering enzymes by amorphous metal-organic frame works. Nature Communications, 10, 51–65.

    PubMed  PubMed Central  Google Scholar 

  16. Li, M., Qiao, S., Cheng, P., Zheng, Y., & Chen, Y. (2020). Fabricating covalent organic frame work capsules with commodious microenvironment for enzymes. Journal of the American Chemical Society, 142, 6675–6681.

    CAS  PubMed  Google Scholar 

  17. Bilal, M., Rasheed, T., Zhao, Y., & Cui, J. (2018). “Smart” chemistry and its application in peroxidase immobilization using different support material. International Journal of Biological Macromolecules, 119, 278–290.

    CAS  PubMed  Google Scholar 

  18. Jeon, J., Murugesan, K., Kim, Y., Kim, E., & Chang, Y. (2008). Synergistic effect of laccase mediators on pentachlorophenol removal by Ganoderma lucidum laccase. Applied Microbiology and Biotechnology, 81, 783–790.

    CAS  PubMed  Google Scholar 

  19. Sasmaz, S., Gedikli, S., Aytar, P., Cabuk, A., Hur, E., & Unal, A. (2010). Decolorization potential of some reactive dyes with crude laccase and laccase-mediated system. Applied Biochemistry and Biotechnology, 163, 346–361.

    PubMed  Google Scholar 

  20. Sathishkumara, P., Chae, J.-C., Unnithan, A. R., & Oh, B. T. (2012). Laccase (poly-lactic-co-glycolic acid) (PLGA) nanofiber- highly stable, reusable, and efficacious for the transformation of diclofenac. Enzyme and Microbial Technology, 51, 113–118.

    Google Scholar 

  21. Lloret, L., Moreira, M. T., Feijoo, G., & Lema, J. M. (2010). Laccase-catalyzed degradation of anti-inflammatories and estrogens. Biochemical Engineering Journal, 51, 124–131.

    CAS  Google Scholar 

  22. Estrada, E. D., Magdalena, D. J., & Hafiz, M. N. (2018). Emergent contaminants: Endocrine disruptors and their laccase assisted degradation-a review. The Science of the Total Environment, 612, 1516–1521.

    Google Scholar 

  23. Singh, G., Capalash, N., Goel, R., & Sharma, P. (2007). A pH-stable laccase from alkali-tolerant-proteobacterium JB : purification, characterization and indigo carmine degradation. Enzyme and Microbial Technology, 41, 794–799.

    CAS  Google Scholar 

  24. Olajuyigbe, F. M., & Fatokun, C. O. (2017). Biochemical characterization of an extremely stable pH-versatile laccase from Sporothrix carnis CPF-05. International Journal of Biological Macromolecules, 94, 535–543.

    CAS  PubMed  Google Scholar 

  25. Lamelli, U. K. (1979). Cleavage of structural proteins during the assembly of head bacteriophage T4. Nature, 227, 680–685.

    Google Scholar 

  26. Liu, L., Lin, Z., Zheng, T., & Wang, Z. (2009). Fermentation optimization and characterization of the laccase from Pleurotus ostreatus strain 10969. Enzyme and Microbial Technology, 44, 426–433.

    CAS  Google Scholar 

  27. Bilal, M., Rasheed, T., Iqbal, H. M. N., Hu, H., & Wang, W. (2017). Novel characteristics of horseradish peroxidase immobilized onto the polyvinyl alcohol-alginate beads and its methyl orange degradation potential. International Journal of Biological Macromolecules, 105, 328–335.

    CAS  PubMed  Google Scholar 

  28. Sheldon, R., & Pelt, S. (2013). Enzyme immobilization in biocatalysis: why, what, and how. Chemical Society Reviews, 42, 6223.

    CAS  PubMed  Google Scholar 

  29. Halaburagi, V. M., Sharma, S., Sinha, S., & Karegoudar, T. B. (2011). Purification and characterization of a thermostable laccase from the ascomycetes Cladosporium cladosporioides and its applications. Process Biochemistry, 46, 1146–1152.

    Google Scholar 

  30. Park, N., & Park, S. (2014). Purification and characterization of a novel laccase from Fomitopsis pinicola mycelia. International Journal of Biological Macromolecules, 70, 583–589.

    CAS  PubMed  Google Scholar 

  31. Vantamuri, A. B., & Kaliwal, B. B. (2016). Purification and characterization of laccase from Marasmius species BBKAV79 and effective decolorization of selected textile dyes. 3 Biotech, 6, 1–10.

    Google Scholar 

  32. Tamboli, D. P., Telke, A. K., Dawkar, V. V., Jadhav, S. B., & Govindwar, S. P. (2011). Purification and characterization of bacterial aryl alcohol oxidase from Sphingobacterium sp. ATM and its uses in textile dye decolorization. Biotechnology and Bioprocess Engineering, 16, 661–668.

    CAS  Google Scholar 

  33. Maryam, S., Ali, M., & Khosro, K. (2016). Purification and characterization of an alkaline chloride-tolerant bacterium, Bacillus sp. strain WT. Journal of Molecular Catalysis B: Enzymatic, 134, 89–97.

    Google Scholar 

  34. Baldrain, P. (2004). Purification and characterization of laccase from the white rot fungus Daedalea quercinia, and decolorization of synthetic dyes by the enzyme. Applied Microbiology and Biotechnology, 63, 560–563.

    Google Scholar 

  35. Olajuyigbe, F. M., Adetuyi, A. M., & Fatokun, C. O. (2019). Characterization of free and immobilized laccase from Cyberlindnera fabianii and application in degradation of bisphenol A. International Journal of Biological Macromolecules, 125, 856–864.

    CAS  PubMed  Google Scholar 

  36. Brander, S., Mikkelsen, J. D., & Kepp, K. P. (2014). Characterization of an alkali- and halide-resistant laccase expressed in E. coli : CotA from Bacillus clausii. PLoS One, 9(6): e99402.

  37. Boz, N., & Lonc, N. (2013). Bacillus amyloliquefaciens laccase – from soil bacteria to recombinant enzyme for wastewater decolorization. Bioresource Technology, 147, 177–183.

    Google Scholar 

  38. Koroleva, O. V., Stepanova, E. V., Binukov, V. I., & Timofeev, V. P. (2001). Temperature-induced changes in copper centers and protein conformation of two fungal laccases from Coriolus hirsutus and Coriolus zonatus. Biochimica et Biophysica Acta, 1547, 397–407.

    CAS  PubMed  Google Scholar 

  39. De Eugenio, L., Ghariani, B., & Louati, I. (2017). A halotolerant laccase from Chaetomium strain isolated from desert soil and its ability for dye decolourization. 3 Biotech, 7, 329.

    PubMed  PubMed Central  Google Scholar 

  40. Kiiskinen, L., Viikari, L., & Kruus, K. (2002). Purification and characterisation of a novel laccase from the ascomycete Melanocarpus albomyces. Applied Microbiology and Biotechnology, 59, 198–204.

    CAS  PubMed  Google Scholar 

  41. Rommel, S., Granza, T., & Bugg, T. (2018). Characterization of multicopper oxidase COP a from Pseudomonas putida KT2440 and Pseudomonas fluorescens pf-5: involved in bacterial lignin oxidation. Archives of Biochemistry and Biophysics, 660, 97–107.

    Google Scholar 

  42. Nagai, M., Sato, T., & Watanabe, H. (2002). Purification and chracterization of an extracellular laccase from the edible mushroom Lentinla edodes, and decolorization of chemically different dyes. Applied Microbiology and Biotechnology, 60, 327–335.

    CAS  PubMed  Google Scholar 

  43. Niladevi, K. N., Jacob, N., & Prema, P. (2008). Evidence for a halotolerant-alkaline laccase in Streptomyces psammoticus: purification and characterization. Process Biochemistry, 43, 654–660.

    CAS  Google Scholar 

  44. Neifar, M., Jaouani, A., Ellouze-ghorbel, R., & Ellouze-chaabouni, S. (2010). Purification, characterization and decolourization ability of Fomes fomentarius laccase produced in solid medium. Journal of Molecular Catalysis B: Enzymatic, 64, 68–74.

    CAS  Google Scholar 

  45. Marco-urrea, E., Pérez-trujillo, M., Cruz-morató, C., Caminal, G., & Vicent, T. (2010). Degradation of the drug sodium diclofenac by Trametes versicolor pellets and identification of some intermediates by NMR. Journal of Hazardous Materials, 176, 836–842.

    CAS  PubMed  Google Scholar 

  46. Ran, X., Ronghzi, T., & Bingru, Z. (2015). Enhancement of catalytic activity of immobilied laccase for diclofenac degradation by carbon nanotubes. Chemical Engineering Journal, 262, 88–95.

    Google Scholar 

  47. Jurinjak Tusek, A., Salic, A., & Zelic, B. (2017). Catechol removal from aqueous media using laccase immobilized in different macro and microreactor systems. Applied Biochemistry and Biotechnology, 182, 1575–1590.

    Google Scholar 

Download references

Acknowledgments

The authors are grateful and acknowledge SAIF IIT Bombay for LC-MS analysis.

Funding

This study is funded by UGC-SAP programme DRS-II for Dept of Biochemistry Gulbarga University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kuruba Sreeramulu.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original version of this article was revised: The original version of this article unfortunately contained a mistake in the equation under “Immobilized Laccase Activity and its Storage Stability” section.

Electronic Supplementary Material

ESM 1

(DOCX 34 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neelkant, K.S., Shankar, K., Jayalakshmi, S.K. et al. Purification, Biochemical Characterization, and Facile Immobilization of Laccase from Sphingobacterium ksn-11 and its Application in Transformation of Diclofenac. Appl Biochem Biotechnol 192, 831–844 (2020). https://doi.org/10.1007/s12010-020-03371-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-020-03371-1

Keywords