Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Activity-Based Imaging Probes of the Proteasome

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Over the years, the proteasome has been extensively investigated due to its crucial roles in many important signaling pathways and its implications in diseases. Two proteasome inhibitors—bortezomib and carfilzomib—have received FDA approval for the treatment of multiple myeloma, thereby validating the proteasome as a chemotherapeutic target. As a result, further research efforts have been focused on dissecting the complex biology of the proteasome to gain the insight required for developing next-generation proteasome inhibitors. It is clear that chemical probes have made significant contributions to these efforts, mostly by functioning as inhibitors that selectively block the catalytic activity of proteasomes. Analogues of these inhibitors are now providing additional tools for visualization of catalytically active proteasome subunits, several of which allow real-time monitoring of proteasome activity in living cells as well as in in vivo settings. These imaging probes will provide powerful tools for assessing the efficacy of proteasome inhibitors in clinical settings. In this review, we will focus on the recent efforts towards developing imaging probes of proteasomes, including the latest developments in immunoproteasome-selective imaging probes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Konstantinova, I. M., Tsimokha, A. S., & Mittenberg, A. G. (2008). Role of proteasomes in cellular regulation. International Review of Cell and Molecular Biology, 267, 59–124.

    Article  PubMed  Google Scholar 

  2. Marques, A. J., Palanimurugan, R., Matias, A. C., Ramos, P. C., & Dohmen, R. J. (2009). Catalytic mechanism and assembly of the proteasome. Chemical Reviews, 109, 1509–1536.

    Article  PubMed  CAS  Google Scholar 

  3. Navon, A., & Ciechanover, A. (2009). The 26 S proteasome: From basic mechanisms to drug targeting. Journal of Biological Chemistry, 284, 33713–33718.

    Article  PubMed  CAS  Google Scholar 

  4. Griffin, B. A., Adams, S. R., & Tsien, R. Y. (1998). Specific covalent labeling of recombinant protein molecules inside live cells. Science, 281, 269–272.

    Article  PubMed  CAS  Google Scholar 

  5. Hallermalm, K., Seki, K., Wei, C., Castelli, C., Rivoltini, L., Kiessling, R., et al. (2001). Tumor necrosis factor-alpha induces coordinated changes in major histocompatibility class I presentation pathway, resulting in increased stability of class I complexes at the cell surface. Blood, 98, 1108–1115.

    Article  PubMed  CAS  Google Scholar 

  6. Murata, S., Sasaki, K., Kishimoto, T., Niwa, S., Hayashi, H., Takahama, Y., et al. (2007). Regulation of CD8+ T cell development by thymus-specific proteasomes. Science, 316, 1349–1353.

    Article  PubMed  CAS  Google Scholar 

  7. De, M., Jayarapu, K., Elenich, L., Monaco, J. J., Colbert, R. A., & Griffin, T. A. (2003). Beta 2 subunit propeptides influence cooperative proteasome assembly. Journal of Biological Chemistry, 278, 6153–6159.

    Article  PubMed  CAS  Google Scholar 

  8. Murata, S., Yashiroda, H., & Tanaka, K. (2009). Molecular mechanisms of proteasome assembly. Nature Reviews Molecular Cell Biology, 10, 104–115.

    Article  PubMed  CAS  Google Scholar 

  9. Yewdell, J. W. (2005). Immunoproteasomes: Regulating the regulator. Proceedings of the National Academy of Sciences of the United States of America, 102, 9089–9090.

    Article  PubMed  CAS  Google Scholar 

  10. Groettrup, M., Kirk, C. J., & Basler, M. (2010). Proteasomes in immune cells: More than peptide producers? Nature Reviews Immunology, 10, 73–78.

    Article  PubMed  CAS  Google Scholar 

  11. Rockwell, C. E., Monaco, J. J., & Qureshi, N. (2012). A critical role for the inducible proteasomal subunits LMP7 and MECL1 in cytokine production by activated murine splenocytes. Pharmacology, 89, 117–126.

    Article  PubMed  CAS  Google Scholar 

  12. Seifert, U., Bialy, L. P., Ebstein, F., Bech-Otschir, D., Voigt, A., Schroter, F., et al. (2010). Immunoproteasomes preserve protein homeostasis upon interferon-induced oxidative stress. Cell, 142, 613–624.

    Article  PubMed  CAS  Google Scholar 

  13. Angeles, A., Fung, G., & Luo, H. (2012). Immune and non-immune functions of the immunoproteasome. Frontiers in Bioscience, 17, 1904–1916.

    Article  CAS  Google Scholar 

  14. Diaz-Hernandez, M., Hernandez, F., Martin-Aparicio, E., Gomez-Ramos, P., Moran, M. A., Castano, J. G., et al. (2003). Neuronal induction of the immunoproteasome in Huntington’s disease. Journal of Neuroscience, 23, 11653–11661.

    PubMed  CAS  Google Scholar 

  15. Mishto, M., Bellavista, E., Santoro, A., Stolzing, A., Ligorio, C., Nacmias, B., et al. (2006). Immunoproteasome and LMP2 polymorphism in aged and Alzheimer’s disease brains. Neurobiology of Aging, 27, 54–66.

    Article  PubMed  CAS  Google Scholar 

  16. Fitzpatrick, L. R., Khare, V., Small, J. S., & Koltun, W. A. (2006). Dextran sulfate sodium-induced colitis is associated with enhanced low molecular mass polypeptide 2 (LMP2) expression and is attenuated in LMP2 knockout mice. Digestive Diseases and Sciences, 51, 1269–1276.

    Article  PubMed  CAS  Google Scholar 

  17. Kuhn, D. J., Hunsucker, S. A., Chen, Q., Voorhees, P. M., Orlowski, M., & Orlowski, R. Z. (2009). Targeted inhibition of the immunoproteasome is a potent strategy against models of multiple myeloma that overcomes resistance to conventional drugs and nonspecific proteasome inhibitors. Blood, 113, 4667–4676.

    Article  PubMed  CAS  Google Scholar 

  18. Kuhn, D. J., & Orlowski, R. Z. (2012). The immunoproteasome as a target in hematologic malignancies. Seminars in Hematology, 49, 258–262.

    Article  PubMed  CAS  Google Scholar 

  19. Muchamuel, T., Basler, M., Aujay, M. A., Suzuki, E., Kalim, K. W., Lauer, C., et al. (2009). A selective inhibitor of the immunoproteasome subunit LMP7 blocks cytokine production and attenuates progression of experimental arthritis. Nature Medicine, 15, 781–787.

    Article  PubMed  CAS  Google Scholar 

  20. Ho, Y. K., Bargagna-Mohan, P., Wehenkel, M., Mohan, R., & Kim, K. B. (2007). LMP2-specific inhibitors: chemical genetic tools for proteasome biology. Chemistry & Biology, 14, 419–430.

    Article  CAS  Google Scholar 

  21. Parlati, F., Lee, S. J., Aujay, M., Suzuki, E., Levitsky, K., Lorens, J. B., et al. (2009). Carfilzomib can induce tumor cell death through selective inhibition of the chymotrypsin-like activity of the proteasome. Blood, 114, 3439–3447.

    Article  PubMed  CAS  Google Scholar 

  22. Singh, A. V., Bandi, M., Aujay, M. A., Kirk, C. J., Hark, D. E., Raje, N., et al. (2011). PR-924, a selective inhibitor of the immunoproteasome subunit LMP-7, blocks multiple myeloma cell growth both in vitro and in vivo. British Journal of Haematology, 152, 155–163.

    Article  PubMed  CAS  Google Scholar 

  23. Lee, W., & Kim, K. B. (2011). The immunoproteasome: An emerging therapeutic target. Current Topics in Medicinal Chemistry, 11, 2923–2930.

    Article  PubMed  CAS  Google Scholar 

  24. Bogyo, M., McMaster, J. S., Gaczynska, M., Tortorella, D., Goldberg, A. L., & Ploegh, H. (1997). Covalent modification of the active site threonine of proteasomal beta subunits and the Escherichia coli homolog HslV by a new class of inhibitors. Proceedings of the National Academy of Sciences of the United States of America, 94, 6629–6634.

    Article  PubMed  CAS  Google Scholar 

  25. Bogyo, M., Shin, S., McMaster, J. S., & Ploegh, H. L. (1998). Substrate binding and sequence preference of the proteasome revealed by active-site-directed affinity probes. Chemistry & Biology, 5, 307–320.

    Article  CAS  Google Scholar 

  26. Nazif, T., & Bogyo, M. (2001). Global analysis of proteasomal substrate specificity using positional-scanning libraries of covalent inhibitors. Proceedings of the National Academy of Sciences of the United States of America, 98, 2967–2972.

    Article  PubMed  CAS  Google Scholar 

  27. Kessler, B. M., Tortorella, D., Altun, M., Kisselev, A. F., Fiebiger, E., Hekking, B. G., et al. (2001). Extended peptide-based inhibitors efficiently target the proteasome and reveal overlapping specificities of the catalytic beta-subunits. Chemistry & Biology, 8, 913–929.

    Article  CAS  Google Scholar 

  28. Gu, C., Kolodziejek, I., Misas-Villamil, J., Shindo, T., Colby, T., Verdoes, M., et al. (2010). Proteasome activity profiling: A simple, robust and versatile method revealing subunit-selective inhibitors and cytoplasmic, defense-induced proteasome activities. Plant Journal, 62, 160–170.

    Article  PubMed  CAS  Google Scholar 

  29. Kraus, M., Ruckrich, T., Reich, M., Gogel, J., Beck, A., Kammer, W., et al. (2007). Activity patterns of proteasome subunits reflect bortezomib sensitivity of hematologic malignancies and are variable in primary human leukemia cells. Leukemia, 21, 84–92.

    Article  PubMed  CAS  Google Scholar 

  30. Mirabella, A. C., Pletnev, A. A., Downey, S. L., Florea, B. I., Shabaneh, T. B., Britton, M., et al. (2011). Specific cell-permeable inhibitor of proteasome trypsin-like sites selectively sensitizes myeloma cells to bortezomib and carfilzomib. Chemistry & Biology, 18, 608–618.

    Article  CAS  Google Scholar 

  31. Berkers, C. R., Verdoes, M., Lichtman, E., Fiebiger, E., Kessler, B. M., Anderson, K. C., et al. (2005). Activity probe for in vivo profiling of the specificity of proteasome inhibitor bortezomib. Nature Methods, 2, 357–362.

    Article  PubMed  CAS  Google Scholar 

  32. Chauhan, D., Catley, L., Li, G., Podar, K., Hideshima, T., Velankar, M., et al. (2005). A novel orally active proteasome inhibitor induces apoptosis in multiple myeloma cells with mechanisms distinct from Bortezomib. Cancer Cell, 8, 407–419.

    Article  PubMed  CAS  Google Scholar 

  33. Crawford, L. J., Walker, B., Ovaa, H., Chauhan, D., Anderson, K. C., Morris, T. C., et al. (2006). Comparative selectivity and specificity of the proteasome inhibitors BzLLLCOCHO, PS-341, and MG-132. Cancer Research, 66, 6379–6386.

    Article  PubMed  CAS  Google Scholar 

  34. Kristiansen, M., Deriziotis, P., Dimcheff, D. E., Jackson, G. S., Ovaa, H., Naumann, H., et al. (2007). Disease-associated prion protein oligomers inhibit the 26S proteasome. Molecular Cell, 26, 175–188.

    Article  PubMed  CAS  Google Scholar 

  35. Crawford, L. J., Windrum, P., Magill, L., Melo, J. V., McCallum, L., McMullin, M. F., et al. (2009). Proteasome proteolytic profile is linked to Bcr-Abl expression. Experimental Hematology, 37, 357–366.

    Article  PubMed  CAS  Google Scholar 

  36. Verdoes, M., Florea, B. I., Menendez-Benito, V., Maynard, C. J., Witte, M. D., van der Linden, W. A., et al. (2006). A fluorescent broad-spectrum proteasome inhibitor for labeling proteasomes in vitro and in vivo. Chemistry & Biology, 13, 1217–1226.

    Article  CAS  Google Scholar 

  37. Verdoes, M., Berkers, C. R., Florea, B. I., van Swieten, P. F., Overkleeft, H. S., & Ovaa, H. (2006). Chemical proteomics profiling of proteasome activity. Methods in Molecular Biology, 328, 51–69.

    PubMed  CAS  Google Scholar 

  38. Verdoes, M., Hillaert, U., Florea, B. I., Sae-Heng, M., Risseeuw, M. D., Filippov, D. V., et al. (2007). Acetylene functionalized BODIPY dyes and their application in the synthesis of activity based proteasome probes. Bioorganic & Medicinal Chemistry Letters, 17, 6169–6171.

    Article  CAS  Google Scholar 

  39. Verdoes, M., Willems, L. I., van der Linden, W. A., Duivenvoorden, B. A., van der Marel, G. A., Florea, B. I., et al. (2010). A panel of subunit-selective activity-based proteasome probes. Organic & Biomolecular Chemistry, 8, 2719–2727.

    Article  CAS  Google Scholar 

  40. Screen, M., Britton, M., Downey, S. L., Verdoes, M., Voges, M. J., Blom, A. E., et al. (2010). Nature of pharmacophore influences active site specificity of proteasome inhibitors. The Journal of biological chemistry, 285, 40125–40134.

    Article  PubMed  CAS  Google Scholar 

  41. Ruckrich, T., Kraus, M., Gogel, J., Beck, A., Ovaa, H., Verdoes, M., et al. (2009). Characterization of the ubiquitin–proteasome system in bortezomib-adapted cells. Leukemia, 23, 1098–1105.

    Article  PubMed  CAS  Google Scholar 

  42. Berkers, C. R., van Leeuwen, F. W., Groothuis, T. A., Peperzak, V., van Tilburg, E. W., Borst, J., et al. (2007). Profiling proteasome activity in tissue with fluorescent probes. Molecular Pharmaceutics, 4, 739–748.

    Article  PubMed  CAS  Google Scholar 

  43. Berkers, C. R., Leestemaker, Y., Schuurman, K. G., Ruggeri, B., Jones-Bolin, S., Williams, M., et al. (2012). Probing the specificity and activity profiles of the proteasome inhibitors bortezomib and delanzomib. Molecular Pharmaceutics, 9, 1126–1135.

    PubMed  CAS  Google Scholar 

  44. de Jong, A., Schuurman, K. G., Rodenko, B., Ovaa, H., & Berkers, C. R. (2012). Fluorescence-based proteasome activity profiling. Methods in Molecular Biology, 803, 183–204.

    Article  PubMed  Google Scholar 

  45. Clerc, J., Groll, M., Illich, D. J., Bachmann, A. S., Huber, R., Schellenberg, B., et al. (2009). Synthetic and structural studies on syringolin A and B reveal critical determinants of selectivity and potency of proteasome inhibition. Proceedings of the National Academy of Sciences of the United States of America, 106, 6507–6512.

    Article  PubMed  CAS  Google Scholar 

  46. Clerc, J., Florea, B. I., Kraus, M., Groll, M., Huber, R., Bachmann, A. S., et al. (2009). Syringolin A selectively labels the 20 S proteasome in murine EL4 and wild-type and bortezomib-adapted leukaemic cell lines. ChemBioChem, 10, 2638–2643.

    Article  PubMed  CAS  Google Scholar 

  47. Kolodziejek, I., Misas-Villamil, J. C., Kaschani, F., Clerc, J., Gu, C., Krahn, D., et al. (2011). Proteasome activity imaging and profiling characterizes bacterial effector syringolin A. Plant Physiology, 155, 477–489.

    Article  PubMed  CAS  Google Scholar 

  48. Meng, L., Mohan, R., Kwok, B. H., Elofsson, M., Sin, N., & Crews, C. M. (1999). Epoxomicin, a potent and selective proteasome inhibitor, exhibits in vivo antiinflammatory activity. Proceedings of the National Academy of Sciences of the United States of America, 96, 10403–10408.

    Article  PubMed  CAS  Google Scholar 

  49. Florea, B. I., Verdoes, M., Li, N., van der Linden, W. A., Geurink, P. P., van den Elst, H., et al. (2010). Activity-based profiling reveals reactivity of the murine thymoproteasome-specific subunit beta5t. Chemistry & Biology, 17, 795–801.

    Article  CAS  Google Scholar 

  50. Groll, M., Schellenberg, B., Bachmann, A. S., Archer, C. R., Huber, R., Powell, T. K., et al. (2008). A plant pathogen virulence factor inhibits the eukaryotic proteasome by a novel mechanism. Nature, 452, 755–758.

    Article  PubMed  CAS  Google Scholar 

  51. Ovaa, H., van Swieten, P. F., Kessler, B. M., Leeuwenburgh, M. A., Fiebiger, E., van den Nieuwendijk, A. M., et al. (2003). Chemistry in living cells: Detection of active proteasomes by a two-step labeling strategy. Angewandte Chemie (International ed. in English), 42, 3626–3629.

    Article  CAS  Google Scholar 

  52. Verdoes, M., Florea, B. I., Hillaert, U., Willems, L. I., van der Linden, W. A., Sae-Heng, M., et al. (2008). Azido-BODIPY acid reveals quantitative Staudinger–Bertozzi ligation in two-step activity-based proteasome profiling. ChemBioChem, 9, 1735–1738.

    Article  PubMed  CAS  Google Scholar 

  53. Kaschani, F., Verhelst, S. H., van Swieten, P. F., Verdoes, M., Wong, C. S., Wang, Z., et al. (2009). Minitags for small molecules: detecting targets of reactive small molecules in living plant tissues using ‘click chemistry’. Plant Journal, 57, 373–385.

    Article  PubMed  CAS  Google Scholar 

  54. van Swieten, P. F., Samuel, E., Hernandez, R. O., van den Nieuwendijk, A. M., Leeuwenburgh, M. A., van der Marel, G. A., et al. (2007). A cell-permeable inhibitor and activity-based probe for the caspase-like activity of the proteasome. Bioorganic & Medicinal Chemistry Letters, 17, 3402–3405.

    Article  Google Scholar 

  55. Britton, M., Lucas, M. M., Downey, S. L., Screen, M., Pletnev, A. A., Verdoes, M., et al. (2009). Selective inhibitor of proteasome’s caspase-like sites sensitizes cells to specific inhibition of chymotrypsin-like sites. Chemistry & Biology, 16, 1278–1289.

    Article  CAS  Google Scholar 

  56. Willems, L. I., Li, N., Florea, B. I., Ruben, M., van der Marel, G. A., & Overkleeft, H. S. (2012). Triple bioorthogonal ligation strategy for simultaneous labeling of multiple enzymatic activities. Angewandte Chemie (International ed. in English), 51, 4431–4434.

    Article  CAS  Google Scholar 

  57. Carmony, K. C., Lee, D. M., Wu, Y., Lee, N. R., Wehenkel, M., Lee, J., et al. (2012). A bright approach to the immunoproteasome: Development of LMP2/beta1i-specific imaging probes. Bioorganic & Medicinal Chemistry, 20, 607–613.

    Article  CAS  Google Scholar 

  58. Lei, B., Abdul Hameed, M. D., Hamza, A., Wehenkel, M., Muzyka, J. L., Yao, X. J., et al. (2010). Molecular basis of the selectivity of the immunoproteasome catalytic subunit LMP2-specific inhibitor revealed by molecular modeling and dynamics simulations. The Journal of Physical Chemistry B, 114, 12333–12339.

    Article  PubMed  CAS  Google Scholar 

  59. Wehenkel, M., Ban, J. O., Ho, Y. K., Carmony, K. C., Hong, J. T., & Kim, K. B. (2012). A selective inhibitor of the immunoproteasome subunit LMP2 induces apoptosis in PC-3 cells and suppresses tumour growth in nude mice. British Journal of Cancer, 107, 53–62.

    Article  PubMed  CAS  Google Scholar 

  60. Sharma, L. K., Lee, N. R., Jang, E. R., Lei, B., Zhan, C. G., Lee, W., et al. (2012). Activity-based near-infrared fluorescent probe for LMP7: A chemical proteomics tool for the immunoproteasome in living cells. ChemBioChem, 13, 1899–1903.

    Article  PubMed  CAS  Google Scholar 

  61. Willems, L. I., Li, N., Florea, B. I., Ruben, M., van der Marel, G. A., & Overkleeft, H. S. (2012). Triple bioorthogonal ligation strategy for simultaneous labeling of multiple enzymatic activities. Angewandte Chemie International Edition, 51, 4431–4434.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the National Institutes of Health for their financial support (R01 CA128903).

Conflict of interest

All authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyung Bo Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carmony, K.C., Kim, K.B. Activity-Based Imaging Probes of the Proteasome. Cell Biochem Biophys 67, 91–101 (2013). https://doi.org/10.1007/s12013-013-9626-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-013-9626-4

Keywords