Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Fine-Granularity Functional Interaction Signatures for Characterization of Brain Conditions

  • Original Article
  • Published:
Neuroinformatics Aims and scope Submit manuscript

Abstract

In the human brain, functional activity occurs at multiple spatial scales. Current studies on functional brain networks and their alterations in brain diseases via resting-state functional magnetic resonance imaging (rs-fMRI) are generally either at local scale (regionally confined analysis and inter-regional functional connectivity analysis) or at global scale (graph theoretic analysis). In contrast, inferring functional interaction at fine-granularity sub-network scale has not been adequately explored yet. Here our hypothesis is that functional interaction measured at fine-granularity sub-network scale can provide new insight into the neural mechanisms of neurological and psychological conditions, thus offering complementary information for healthy and diseased population classification. In this paper, we derived fine-granularity functional interaction (FGFI) signatures in subjects with Mild Cognitive Impairment (MCI) and Schizophrenia by diffusion tensor imaging (DTI) and rs-fMRI, and used patient-control classification experiments to evaluate the distinctiveness of the derived FGFI features. Our experimental results have shown that the FGFI features alone can achieve comparable classification performance compared with the commonly used inter-regional connectivity features. However, the classification performance can be substantially improved when FGFI features and inter-regional connectivity features are integrated, suggesting the complementary information achieved from the FGFI signatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Alizadeh, A. A., Eisen, M. B., Davis, R. E., Ma, C., Lossos, I. S., Rosenwald, A., et al. (2000). Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature, 403(6769), 503–511.

    Article  PubMed  CAS  Google Scholar 

  • Allen, M., & Williams, G. (2011). Consciousness, plasticity, and connectomics: the role of intersubjectivity in human cognition. Frontiers in Psychology, 2, 20. doi:10.3389/fpsyg.2011.00020.

    Article  PubMed  Google Scholar 

  • Andrews-Hanna, J. R., Snyder, A. Z., Vincent, J. L., Lustig, C., Head, D., Raichle, M. E., et al. (2007). Disruption of large-scale brain systems in advanced aging. Neuron, 56(5), 924–935.

    Article  PubMed  CAS  Google Scholar 

  • Barabasi, A. L., Gulbahce, N., & Loscalzo, J. (2011). Network medicine: a network-based approach to human disease. Nature Reviews Genetics, 12(1), 56–68.

    Article  PubMed  CAS  Google Scholar 

  • Bassett, D. S., & Bullmore, E. T. (2009). Human brain networks in health and disease. Current Opinion in Neurology, 22(4), 340–347.

    Article  PubMed  Google Scholar 

  • Beckmann, C. F., DeLuca, M., Devlin, J. T., & Smith, S. M. (2005). Investigations into resting-state connectivity using independent component analysis. Philosophical Transactions of the Royal Society B: Biological Sciences, 360(1457), 1001–1013.

    Article  Google Scholar 

  • Behrens, T. E., & Sporns, O. (2011). Human connectomics. Current Opinion in Neurobiology, 22(1), 144–153.

    Article  PubMed  Google Scholar 

  • Bickel, S., & Scheffer, T. Multi-view clustering. In Brighton, United kingdom, 2004 (pp. 19–26, Proceedings—Fourth IEEE International Conference on Data Mining, ICDM 2004): IEEE Computer Society. doi:10.1109/icdm.2004.10095.

  • Biswal, B., Yetkin, F. Z., Haughton, V. M., & Hyde, J. S. (1995). Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magnetic Resonance in Medicine, 34(4), 537–541.

    Article  PubMed  CAS  Google Scholar 

  • Biswal, B. B., Mennes, M., Zuo, X. N., Gohel, S., Kelly, C., Smith, S. M., et al. (2010). Toward discovery science of human brain function. Proceedings of the National Academy of Sciences of the United States of America, 107(10), 4734–4739.

    Article  PubMed  CAS  Google Scholar 

  • Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., & Hwang, D. U. (2006). Complex networks: Structure and dynamics. [Review]. Physics Reports-Review Section of Physics Letters, 424(4–5), 175–308.

    Google Scholar 

  • Bressler, S. L. (2003). Cortical coordination dynamics and the disorganization syndrome in schizophrenia. Neuropsychopharmacology, 28(Suppl 1), S35–S39.

    Article  PubMed  Google Scholar 

  • Bressler, S. L., & Menon, V. (2010). Large-scale brain networks in cognition: emerging methods and principles. Trends in Cognitive Science, 14(6), 277–290.

    Article  Google Scholar 

  • Buckner, R. L. (2010). Human functional connectivity: new tools, unresolved questions. Proceedings of the National Academy of Sciences of the United States of America, 107(24), 10769–10770.

    Article  PubMed  CAS  Google Scholar 

  • Buldu, J. M., Bajo, R., Maestu, F., Castellanos, N., Leyva, I., Gil, P., et al. (2012). Reorganization of functional networks in mild cognitive impairment. PLoS One, 6(5), e19584.

    Article  Google Scholar 

  • Bullmore, E., & Sporns, O. (2009). Complex brain networks: graph theoretical analysis of structural and functional systems. Nature Reviews Neuroscience, 10(3), 186–198.

    Article  PubMed  CAS  Google Scholar 

  • Cai, X., Nie, F., Huang, H., & Kamangar, F. Heterogeneous image feature integration via multi-modal spectral clustering. In Colorado Springs, CO, United states, 2011 (pp. 1977–1984, Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition): IEEE Computer Society. doi:10.1109/cvpr.2011.5995740.

  • Calhoun, V. D., Adali, T., Pearlson, G. D., & Pekar, J. J. (2001). A method for making group inferences from functional MRI data using independent component analysis. Human Brain Mapping, 14(3), 140–151.

    Article  PubMed  CAS  Google Scholar 

  • Calhoun, V. D., Eichele, T., & Pearlson, G. (2009). Functional brain networks in schizophrenia: a review. Frontiers in Human Neuroscience, 3, 17.

    Article  PubMed  Google Scholar 

  • Chang, C. C., & Lin, C. J. (2001). LIBSVM: a library for support vector machines. http://www.csie.ntu.edu.tw/cjlin/libsvm.

  • Chung, F. (1997). Spectral graph theory: American Mathematical Society.

  • Cordes, D., Haughton, V. M., Arfanakis, K., Wendt, G. J., Turski, P. A., Moritz, C. H., et al. (2000). Mapping functionally related regions of brain with functional connectivity MR imaging. AJNR. American Journal of Neuroradiology, 21(9), 1636–1644.

    PubMed  CAS  Google Scholar 

  • Cordes, D., Haughton, V., Carew, J. D., Arfanakis, K., & Maravilla, K. (2002). Hierarchical clustering to measure connectivity in fMRI resting-state data. Magnetic Resonance Imaging, 20(4), 305–317.

    Article  PubMed  Google Scholar 

  • Courchesne, E., & Pierce, K. (2005). Why the frontal cortex in autism might be talking only to itself: local over-connectivity but long-distance disconnection. Current Opinion in Neurobiology, 15(2), 225–230.

    Article  PubMed  CAS  Google Scholar 

  • Dai, Z., Yan, C., Wang, Z., Wang, J., Xia, M., Li, K., et al. (2011). Discriminative analysis of early Alzheimer’s disease using multi-modal imaging and multi-level characterization with multi-classifier (M3). NeuroImage, 59(3), 2187–2195.

    Article  PubMed  Google Scholar 

  • Damoiseaux, J. S., Rombouts, S. A., Barkhof, F., Scheltens, P., Stam, C. J., Smith, S. M., et al. (2006). Consistent resting-state networks across healthy subjects. Proceedings of the National Academy of Sciences of the United States of America, 103(37), 13848–13853.

    Article  PubMed  CAS  Google Scholar 

  • De Luca, M., Smith, S., De Stefano, N., Federico, A., & Matthews, P. M. (2005). Blood oxygenation level dependent contrast resting state networks are relevant to functional activity in the neocortical sensorimotor system. Experimental Brain Research, 167(4), 587–594.

    Article  Google Scholar 

  • Dickerson, B. C., & Sperling, R. A. (2009). Large-scale functional brain network abnormalities in Alzheimer’s disease: insights from functional neuroimaging. Behavioural Neurology, 21(1), 63–75.

    PubMed  Google Scholar 

  • Fillard, P., & Gerig, G. (2003). Analysis tool for diffusion tensor MRI. Paper presented at the Medical Image Computing and Computer-Assisted Intervention—Miccai 2003, Pt 2, Berlin.

  • Fornito, A., Zalesky, A., Pantelis, C., & Bullmore, E. T. (2012). Schizophrenia, neuroimaging and connectomics. NeuroImage, 62(4), 2296–2314.

    Article  PubMed  Google Scholar 

  • Fox, M. D., & Greicius, M. (2010). Clinical applications of resting state functional connectivity. Frontiers in Systems Neuroscience, 4, 19.

    PubMed  Google Scholar 

  • Fransson, P. (2005). Spontaneous low-frequency BOLD signal fluctuations: an fMRI investigation of the resting-state default mode of brain function hypothesis. Human Brain Mapping, 26(1), 15–29.

    Article  PubMed  Google Scholar 

  • Friston, K. J. (1998). The disconnection hypothesis. Schizophrenia Research, 30(2), 115–125.

    Article  PubMed  CAS  Google Scholar 

  • Greicius, M. D., Supekar, K., Menon, V., & Dougherty, R. F. (2009). Resting-state functional connectivity reflects structural connectivity in the default mode network. Cerebral Cortex, 19(1), 72–78.

    Article  PubMed  Google Scholar 

  • Honey, C. J., Sporns, O., Cammoun, L., Gigandet, X., Thiran, J. P., Meuli, R., et al. (2009). Predicting human resting-state functional connectivity from structural connectivity. Proceedings of the National Academy of Sciences of the United States of America, 106(6), 2035–2040.

    Article  PubMed  CAS  Google Scholar 

  • Hoptman, M. J., Zuo, X. N., Butler, P. D., Javitt, D. C., D’Angelo, D., Mauro, C. J., et al. (2010). Amplitude of low-frequency oscillations in schizophrenia: a resting state fMRI study. Schizophrenia Research, 117(1), 13–20.

    Article  PubMed  Google Scholar 

  • Hu, X., Guo, L., Zhang, D., Li, K., Zhang, T., Lv, J., et al. (2011). Assessing the dynamics on functional brain networks using spectral graphy theory. The 8th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, ISBI’11, Chicago, IL, United states.

  • Iachini, I., Iavarone, A., Senese, V. P., Ruotolo, F., & Ruggiero, G. (2009). Visuospatial memory in healthy elderly, AD and MCI: a review. Current Aging Science, 2(1), 43–59.

    PubMed  Google Scholar 

  • Kemp, C., & Tenenbaum, J. B. (2008). The discovery of structural form. Proceedings of the National Academy of Sciences of the United States of America, 105(31), 10687–10692.

    Article  PubMed  CAS  Google Scholar 

  • Kennedy, D. N. (2010). Making Connections in the Connectome Era. Neuroinformatics, 8(2), 61–62.

    Article  PubMed  Google Scholar 

  • Kumar, A., & Daume Iii, H. A co-training approach for multi-view spectral clustering. In Bellevue, WA, United states, 2011 (pp. 393–400, Proceedings of the 28th International Conference on Machine Learning, ICML 2011): Association for Computing Machinery

  • Larson-Prior, L. J., Zempel, J. M., Nolan, T. S., Prior, F. W., Snyder, A. Z., & Raichle, M. E. (2009). Cortical network functional connectivity in the descent to sleep. Proceedings of the National Academy of Sciences of the United States of America, 106(11), 4489–4494.

    Article  PubMed  CAS  Google Scholar 

  • Li, S. J., Li, Z., Wu, G., Zhang, M. J., Franczak, M., & Antuono, P. G. (2002). Alzheimer Disease: evaluation of a functional MR imaging index as a marker. Radiology, 225(1), 253–259.

    Article  PubMed  Google Scholar 

  • Li, K., Guo, L., Li, G., Nie, J., Faraco, C., Zhao, Q., et al. (2010). Cortical surface based identification of brain networks using high spatial resolution resting state fMRI data. The 7th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, ISBI 2010, Rotterdam, Netherlands,

  • Li, H., Xue, Z., Ellmore, T. M., Frye, R. E., & Wong, S. T. (2012a). Network-based analysis reveals stronger local diffusion-based connectivity and different correlations with oral language skills in brains of children with high functioning autism spectrum disorders. Human Brain Mapping. doi:10.1002/hbm.22185.

  • Li, K., Zhu, D., Guo, L., Li, Z., Lynch, M. E., Coles, C., et al. (2012b). Connectomics Signatures of Prenatal Cocaine Exposure Affected Adolescent Brains. Human Brain Mapping, In press.

  • Liang, P., Wang, Z., Yang, Y., Jia, X., & Li, K. (2011). Functional disconnection and compensation in mild cognitive impairment: evidence from DLPFC connectivity using resting-state fMRI. PLoS One, 6(7), e22153.

    Article  PubMed  CAS  Google Scholar 

  • Liu, T. (2011). A few thoughts on brain ROIs. Brain Imaging and Behavior, 5(3), 189–202.

    Article  PubMed  Google Scholar 

  • Liu, Y., Wang, K., Yu, C., He, Y., Zhou, Y., Liang, M., et al. (2008). Regional homogeneity, functional connectivity and imaging markers of Alzheimer’s disease: a review of resting-state fMRI studies. Neuropsychologia, 46(6), 1648–1656.

    Article  PubMed  Google Scholar 

  • Lohmann, G., & Bohn, S. (2002). Using replicator dynamics for analyzing fMRI data of the human brain. [Article; Proceedings Paper]. IEEE Transactions on Medical Imaging, 21(5), 485–492.

    Article  PubMed  Google Scholar 

  • Luce, R. D., & Perry, A. D. (1949). A method of matrix analysis of group structure. Psychometrika, 14(2), 95–116.

    Article  PubMed  CAS  Google Scholar 

  • Lynall, M. E., Bassett, D. S., Kerwin, R., McKenna, P. J., Kitzbichler, M., Muller, U., et al. (2010). Functional connectivity and brain networks in schizophrenia. Journal of Neuroscience, 30(28), 9477–9487.

    Article  PubMed  CAS  Google Scholar 

  • Martinez, A. M., & Kak, A. C. (2001). PCA versus LDA. [Article]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(2), 228–233.

    Article  Google Scholar 

  • Passingham, R. E., Stephan, K. E., & Kotter, R. (2002). The anatomical basis of functional localization in the cortex. Nature Reviews Neuroscience, 3(8), 606–616.

    PubMed  CAS  Google Scholar 

  • Qi, Z., Wu, X., Wang, Z., Zhang, N., Dong, H., Yao, L., et al. (2010). Impairment and compensation coexist in amnestic MCI default mode network. NeuroImage, 50(1), 48–55.

    Article  PubMed  Google Scholar 

  • Raichle, M. E., & Mintun, M. A. (2006). Brain work and brain imaging. Annual Review of Neuroscience, 29, 449–476.

    Article  PubMed  CAS  Google Scholar 

  • Reiman, E. M., & Jagust, W. J. (2011). Brain imaging in the study of Alzheimer’s disease. NeuroImage, 61(2), 505–516.

    Article  PubMed  Google Scholar 

  • Salvador, R., Suckling, J., Coleman, M. R., Pickard, J. D., Menon, D., & Bullmore, E. (2005). Neurophysiological architecture of functional magnetic resonance images of human brain. Cerebral Cortex, 15(9), 1332–1342.

    Article  PubMed  Google Scholar 

  • Schneider, F., Habel, U., Reske, M., Kellermann, T., Stocker, T., Shah, N. J., et al. (2007). Neural correlates of working memory dysfunction in first-episode schizophrenia patients: an fMRI multi-center study. Schizophrenia Research, 89(1–3), 198–210.

    Article  PubMed  Google Scholar 

  • Seeley, W. W., Crawford, R. K., Zhou, J., Miller, B. L., & Greicius, M. D. (2009). Neurodegenerative diseases target large-scale human brain networks. Neuron, 62(1), 42–52.

    Article  PubMed  CAS  Google Scholar 

  • Smith, S. M., Fox, P. T., Miller, K. L., Glahn, D. C., Fox, P. M., Mackay, C. E., et al. (2009). Correspondence of the brain’s functional architecture during activation and rest. Proceedings of the National Academy of Sciences of the United States of America, 106(31), 13040–13045.

    Article  PubMed  CAS  Google Scholar 

  • Song, M., Zhou, Y., Li, J., Liu, Y., Tian, L., Yu, C., et al. (2008). Brain spontaneous functional connectivity and intelligence. NeuroImage, 41(3), 1168–1176.

    Article  PubMed  Google Scholar 

  • Sorg, C., Riedl, V., Muhlau, M., Calhoun, V. D., Eichele, T., Laer, L., et al. (2007). Selective changes of resting-state networks in individuals at risk for Alzheimer’s disease. Proceedings of the National Academy of Sciences of the United States of America, 104(47), 18760–18765.

    Article  PubMed  CAS  Google Scholar 

  • Sporns, O. (2011). The human connectome: a complex network. Annals of the New York Academy of Sciences, 1224, 109–125.

    Article  PubMed  Google Scholar 

  • Staffen, W., Ladurner, G., Holler, Y., Bergmann, J., Aichhorn, M., Golaszewski, S., et al. (2011). Brain activation disturbance for target detection in patients with mild cognitive impairment: an fMRI study. Neurobiol Aging, 33(5), 1002 e1001–1002 e1016.

    Google Scholar 

  • Supekar, K., Menon, V., Rubin, D., Musen, M., & Greicius, M. D. (2008). Network analysis of intrinsic functional brain connectivity in Alzheimer’s disease. PLoS Computational Biology, 4(6), e1000100.

    Article  PubMed  Google Scholar 

  • Thirion, B., Dodel, S., & Poline, J. B. (2006). Detection of signal synchronizations in resting-state fMRI datasets. NeuroImage, 29(1), 321–327.

    Article  PubMed  Google Scholar 

  • Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O., Delcroix, N., et al. (2002). Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. NeuroImage, 15(1), 273–289.

    Article  PubMed  CAS  Google Scholar 

  • Van de Ven, V. G., Formisano, E., Prvulovic, D., Roeder, C. H., & Linden, D. E. J. (2004). Functional connectivity as revealed by spatial independent component analysis of fMRI measurements during rest. Human Brain Mapping, 22(3), 165–178.

    Article  PubMed  Google Scholar 

  • Van den Heuvel, M. P., & Hulshoff Pol, H. E. (2010). Exploring the brain network: a review on resting-state fMRI functional connectivity. European Neuropsychopharmacology, 20(8), 519–534.

    Article  PubMed  Google Scholar 

  • Van den Heuvel, M., Mandl, R., & Hulshoff Pol, H. (2008). Normalized cut group clustering of resting-state FMRI data. PLoS One, 3(4), e2001.

    Article  PubMed  Google Scholar 

  • Vannini, P., Almkvist, O., Dierks, T., Lehmann, C., & Wahlund, L. O. (2007). Reduced neuronal efficacy in progressive mild cognitive impairment: a prospective fMRI study on visuospatial processing. Psychiatry Research, 156(1), 43–57.

    Article  PubMed  Google Scholar 

  • Verma, M., & Howard, R. J. (2012). Semantic memory and language dysfunction in early Alzheimer’s disease: a review. International Journal of Geriatric Psychiatry. doi:10.1002/gps.3766.

  • Vincent, J. L., Patel, G. H., Fox, M. D., Snyder, A. Z., Baker, J. T., Van Essen, D. C., et al. (2007). Intrinsic functional architecture in the anaesthetized monkey brain. Nature, 447(7140), 83–86.

    Article  PubMed  CAS  Google Scholar 

  • Wang, K., Liang, M., Wang, L., Tian, L., Zhang, X., Li, K., et al. (2007). Altered functional connectivity in early Alzheimer’s disease: a resting-state fMRI study. Human Brain Mapping, 28(10), 967–978.

    Article  PubMed  Google Scholar 

  • Wee, C.-Y., Yap, P.-T., Zhang, D., Denny, K., Browndyke, J. N., Potter, G. G., et al. (2012). Identification of MCI individuals using structural and functional connectivity networks. NeuroImage, 59(3), 2045–2056.

    Article  PubMed  Google Scholar 

  • Whitfield-Gabrieli, S., Thermenos, H. W., Milanovic, S., Tsuang, M. T., Faraone, S. V., McCarley, R. W., et al. (2009). Hyperactivity and hyperconnectivity of the default network in schizophrenia and in first-degree relatives of persons with schizophrenia. Proceedings of the National Academy of Sciences of the United States of America, 106(4), 1279–1284.

    Article  PubMed  CAS  Google Scholar 

  • Woodard, J. L., Seidenberg, M., Nielson, K. A., Antuono, P., Guidotti, L., Durgerian, S., et al. (2009). Semantic memory activation in amnestic mild cognitive impairment. Brain, 132(Pt 8), 2068–2078.

    Article  PubMed  CAS  Google Scholar 

  • Wu, K., Taki, Y., Sato, K., Sassa, Y., Inoue, K., Goto, R., et al. (2012). The overlapping community structure of structural brain network in young healthy individuals. PLoS One, 6(5), e19608.

    Article  Google Scholar 

  • Zang, Y., Jiang, T., Lu, Y., He, Y., & Tian, L. (2004). Regional homogeneity approach to fMRI data analysis. NeuroImage, 22(1), 394–400.

    Article  PubMed  Google Scholar 

  • Zang, Y. F., He, Y., Zhu, C. Z., Cao, Q. J., Sui, M. Q., Liang, M., et al. (2007). Altered baseline brain activity in children with ADHD revealed by resting-state functional MRI. Brain & Development, 29(2), 83–91.

    Article  Google Scholar 

  • Zhang, D., & Raichle, M. E. (2010). Disease and the brain’s dark energy. Nature Reviews. Neurology, 6(1), 15–28.

    Article  PubMed  Google Scholar 

  • Zhang, T., Guo, L., Li, K., Jing, C., Yin, Y., Zhu, D., et al. (2011). Predicting Functional Cortical ROIs via DTI-Derived Fiber Shape Models. Cerebral Cortex, 22(4), 854–864.

    Article  PubMed  Google Scholar 

  • Zhu, D., Li, K., Faraco, C. C., Deng, F., Zhang, D., Guo, L., et al. (2012a). Optimization of functional brain ROIs via maximization of consistency of structural connectivity profiles. NeuroImage, 59(2), 1382–1393.

    Article  Google Scholar 

  • Zhu, D., Li, K., Guo, L., Jiang, X., Zhang, T., Zhang, D., et al. (2012b). DICCCOL: Dense Individualized and Common Connectivity-based Cortical Landmarks. Cerebral Cortex. doi:10.1093/cercor/bhs072.

  • Zou, Q. H., Zhu, C. Z., Yang, Y., Zuo, X. N., Long, X. Y., Cao, Q. J., et al. (2008). An improved approach to detection of amplitude of low-frequency fluctuation (ALFF) for resting-state fMRI: fractional ALFF. Journal of Neuroscience Methods, 172(1), 137–141.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

T Liu was supported by the NIH K01 EB 006878, NIH R01 HL087923-03S2, NIH R01 DA033393, NSF CAREER Award IIS-1149260, and The University of Georgia start-up research funding. X Hu was supported by the National Science Foundation of China under Grant 61103061, the China Postdoctoral Science Foundation under Grant 20110490174, and Special Grade of the Financial Support from the China-Postdoctoral Science Foundation under grant 2012 T50819. J Han was supported by the National Science Foundation of China under Grant 61005018 and 91120005, and NPU-FFR-JC20104. L Wang was supported by the Paul B. Beeson Career Developmental Awards (K23-AG028982) and a National Alliance for Research in Schizophrenia and Depression Young Investigator Award. D Shen was supported by NIH R01 grants EB006733, EB008374, EB009634, and AG041721.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lei Guo or Tianming Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, X., Zhu, D., Lv, P. et al. Fine-Granularity Functional Interaction Signatures for Characterization of Brain Conditions. Neuroinform 11, 301–317 (2013). https://doi.org/10.1007/s12021-013-9177-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12021-013-9177-2

Keywords