Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Fast, Accurate, and Stable Feature Selection Using Neural Networks

  • Original Article
  • Published:
Neuroinformatics Aims and scope Submit manuscript

Abstract

Multi-voxel pattern analysis often necessitates feature selection due to the high dimensional nature of neuroimaging data. In this context, feature selection techniques serve the dual purpose of potentially increasing classification accuracy and revealing sets of features that best discriminate between classes. However, feature selection techniques in current, widespread use in the literature suffer from a number of deficits, including the need for extended computational time, lack of consistency in selecting features relevant to classification, and only marginal increases in classifier accuracy. In this paper we present a novel method for feature selection based on a single-layer neural network which incorporates cross-validation during feature selection and stability selection through iterative subsampling. Comparing our approach to popular alternative feature selection methods, we find increased classifier accuracy, reduced computational cost and greater consistency with which relevant features are selected. Furthermore, we demonstrate that importance mapping, a technique used to identify voxels relevant to classification, can lead to the selection of irrelevant voxels due to shared activation patterns across categories. Our method, owing to its relatively simple architecture, flexibility and speed, can provide a viable alternative for researchers to identify sets of features that best discriminate classes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

Download references

Acknowledgments

This research was supported by FWO-Flanders Odysseus II Award #G.OC44.13 N to WHA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James Deraeve.

Ethics declarations

Conflict of Interest

We report no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deraeve, J., Alexander, W.H. Fast, Accurate, and Stable Feature Selection Using Neural Networks. Neuroinform 16, 253–268 (2018). https://doi.org/10.1007/s12021-018-9371-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12021-018-9371-3

Keywords