Abstract
Multi-voxel pattern analysis often necessitates feature selection due to the high dimensional nature of neuroimaging data. In this context, feature selection techniques serve the dual purpose of potentially increasing classification accuracy and revealing sets of features that best discriminate between classes. However, feature selection techniques in current, widespread use in the literature suffer from a number of deficits, including the need for extended computational time, lack of consistency in selecting features relevant to classification, and only marginal increases in classifier accuracy. In this paper we present a novel method for feature selection based on a single-layer neural network which incorporates cross-validation during feature selection and stability selection through iterative subsampling. Comparing our approach to popular alternative feature selection methods, we find increased classifier accuracy, reduced computational cost and greater consistency with which relevant features are selected. Furthermore, we demonstrate that importance mapping, a technique used to identify voxels relevant to classification, can lead to the selection of irrelevant voxels due to shared activation patterns across categories. Our method, owing to its relatively simple architecture, flexibility and speed, can provide a viable alternative for researchers to identify sets of features that best discriminate classes.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Abraham, A., Pedregosa, F., Eickenberg, M., Gervais, P., Muller, A., Kossaifi, J., … Varoquaux, G. (2014). Machine learning for neuroimaging with Scikit-learn. arXiv:1412.3919 [Cs, Stat]. Retrieved from http://arxiv.org/abs/1412.3919
Bolón-Canedo, V., Sánchez-Maroño, N., & Alonso-Betanzos, A. (2013). A review of feature selection methods on synthetic data. Knowledge and Information Systems, 34(3), 483–519. https://doi.org/10.1007/s10115-012-0487-8.
Boser, B. E., Guyon, I. M., & Vapnik, V. N. (1992). A training algorithm for optimal margin classifiers. In Proceedings of the fifth annual workshop on computational learning theory (pp. 144–152). New York: ACM. https://doi.org/10.1145/130385.130401.
Cao, L. J., & Chong, W. K. (2002). Feature extraction in support vector machine: a comparison of PCA, XPCA and ICA. In Proceedings of the 9th International Conference on Neural Information Processing, 2002. ICONIP ‘02 (Vol. 2, pp. 1001–1005 vol. 2). https://doi.org/10.1109/ICONIP.2002.1198211.
Chandrashekar, G., & Sahin, F. (2014). A survey on feature selection methods. Computers & Electrical Engineering, 40(1), 16–28. https://doi.org/10.1016/j.compeleceng.2013.11.024.
Chou, C. A., Kampa, K., Mehta, S. H., Tungaraza, R. F., Chaovalitwongse, W. A., & Grabowski, T. J. (2014). Voxel selection framework in multi-voxel pattern analysis of fMRI data for prediction of neural response to visual stimuli. IEEE Transactions on Medical Imaging, 33(4), 925–934. https://doi.org/10.1109/TMI.2014.2298856.
Chu, C., Hsu, A.-L., Chou, K.-H., Bandettini, P., & Lin, C. (2012). Does feature selection improve classification accuracy? Impact of sample size and feature selection on classification using anatomical magnetic resonance images. NeuroImage, 60(1), 59–70. https://doi.org/10.1016/j.neuroimage.2011.11.066.
Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3), 273–297. https://doi.org/10.1007/BF00994018.
Cox, D. D., & Savoy, R. L. (2003). Functional magnetic resonance imaging (fMRI) “brain reading”: Detecting and classifying distributed patterns of fMRI activity in human visual cortex. NeuroImage, 19(2), 261–270. https://doi.org/10.1016/S1053-8119(03)00049-1.
Das, S. (2001). Filters, wrappers and a boosting-based hybrid for feature selection. In Proceedings of the eighteenth international conference on machine learning (pp. 74–81). San Francisco, CA, USA: Morgan Kaufmann Publishers Inc. Retrieved from http://dl.acm.org/citation.cfm?id=645530.658297.
De Martino, F., Valente, G., Staeren, N., Ashburner, J., Goebel, R., & Formisano, E. (2008). Combining multivariate voxel selection and support vector machines for mapping and classification of fMRI spatial patterns. NeuroImage, 43(1), 44–58. https://doi.org/10.1016/j.neuroimage.2008.06.037.
Dernoncourt, D., Hanczar, B., & Zucker, J.-D. (2014). Analysis of feature selection stability on high dimension and small sample data. Computational Statistics & Data Analysis, 71, 681–693. https://doi.org/10.1016/j.csda.2013.07.012.
Ding, C., & Peng, H. (2005). Minimum redundancy feature selection from microarray gene expression data. Journal of Bioinformatics and Computational Biology, 3(2), 185–205. https://doi.org/10.1142/S0219720005001004.
Dittman, D., Khoshgoftaar, T. M., Wald, R., & Wang, H. (2011). Stability Analysis of Feature Ranking Techniques on Biological Datasets. In 2011 I.E. International Conference on Bioinformatics and Biomedicine (pp. 252–256). https://doi.org/10.1109/BIBM.2011.84.
Do, L.-N., Yang, H.-J., Kim, S.-H., Lee, G.-S., & Kim, S.-H. (2015). A multi-voxel-activity-based feature selection method for human cognitive states classification by functional magnetic resonance imaging data. Cluster Computing, 18(1), 199–208. https://doi.org/10.1007/s10586-014-0369-9.
Fan, M., & Chou, C.-A. (2016). Exploring stability-based voxel selection methods in MVPA using cognitive neuroimaging data: A comprehensive study. Brain Informatics, 3(3), 193–203. https://doi.org/10.1007/s40708-016-0048-0.
Fleuret, F. (2004). Fast binary feature selection with conditional mutual information. Journal of Machine Learning Research, 5(Nov), 1531–1555.
Guyon, I., & Elisseeff, A. (2003). An introduction to variable and feature selection. Journal of Machine Learning Research, 3(Mar), 1157–1182.
Guyon, I., Weston, J., Barnhill, S., & Vapnik, V. (2002). Gene selection for Cancer classification using support vector machines. Machine Learning, 46(1–3), 389–422. https://doi.org/10.1023/A:1012487302797.
Hall, M. A. (1998). Correlation-based feature selection for machine learning.
Haury, A.-C., Gestraud, P., & Vert, J.-P. (2011). The influence of feature selection methods on accuracy, stability and interpretability of molecular signatures. PLoS One, 6(12), e28210. https://doi.org/10.1371/journal.pone.0028210.
Haxby, J. V., Gobbini, M. I., Furey, M. L., Ishai, A., Schouten, J. L., & Pietrini, P. (2001). Distributed and overlapping representations of faces and objects in ventral temporal cortex. Science, 293(5539), 2425–2430. https://doi.org/10.1126/science.1063736.
Hebart, M. N., Görgen, K., & Haynes, J.-D. (2015). The decoding toolbox (TDT): A versatile software package for multivariate analyses of functional imaging data. Frontiers in Neuroinformatics, 8. https://doi.org/10.3389/fninf.2014.00088.
Johnson, J. D., McDuff, S. G. R., Rugg, M. D., & Norman, K. A. (2009). Recollection, familiarity, and cortical reinstatement: A multi-voxel pattern analysis. Neuron, 63(5), 697–708. https://doi.org/10.1016/j.neuron.2009.08.011.
Kalousis, A., Prados, J., & Hilario, M. (2005). Stability of feature selection algorithms. In Fifth IEEE International Conference on Data Mining (ICDM’05) (p. 8 pp.-). https://doi.org/10.1109/ICDM.2005.135.
Kalousis, A., Prados, J., & Hilario, M. (2007). Stability of feature selection algorithms: A study on high-dimensional spaces. Knowledge and Information Systems, 12(1), 95–116. https://doi.org/10.1007/s10115-006-0040-8.
Kerr, W. T., Douglas, P. K., Anderson, A., & Cohen, M. S. (2014). The utility of data-driven feature selection: Re: Chu et al. 2012. NeuroImage, 84, 1107–1110. https://doi.org/10.1016/j.neuroimage.2013.07.050.
Kirk, P., Witkover, A., Bangham, C. R. M., Richardson, S., Lewin, A. M., & Stumpf, M. P. H. (2013). Balancing the robustness and predictive performance of biomarkers. Journal of Comparative Biology, 20(12), 979–989. https://doi.org/10.1089/cmb.2013.0018.
Kononenko, I., & Simec, E. (1995). Induction of decision trees using Relieff. In Proceedings of the ISSEK94 workshop on mathematical and statistical methods in artificial intelligence (pp. 199–220). Springer, Vienna. https://doi.org/10.1007/978-3-7091-2690-5_14.
Kononenko, I., Šimec, E., & Robnik-Šikonja, M. (1997). Overcoming the myopia of inductive learning algorithms with RELIEFF. Applied Intelligence, 7(1), 39–55. https://doi.org/10.1023/A:1008280620621.
Křížek, P., Kittler, J., & Hlaváč, V. (2007). Improving stability of feature selection methods. In Computer Analysis of Images and Patterns (pp. 929–936). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74272-2_115, Improving Stability of Feature Selection Methods.
Kuncheva, L. I., Rodriguez, J. J., Plumpton, C. O., Linden, D. E. J., & Johnston, S. J. (2010). Random subspace ensembles for fMRI classification. IEEE Transactions on Medical Imaging, 29(2), 531–542. https://doi.org/10.1109/TMI.2009.2037756.
Lewis-Peacock, J. A., Drysdale, A. T., Oberauer, K., & Postle, B. R. (2011). Neural evidence for a distinction between short-term memory and the focus of attention. Journal of Cognitive Neuroscience, 24(1), 61–79. https://doi.org/10.1162/jocn_a_00140.
Li, J., Cheng, K., Wang, S., Morstatter, F., Trevino, R. P., Tang, J., & Liu, H. (2017). Feature Selection: A Data Perspective. ACM Computing. Surveys, 50(6), 94:1–94:45. :https://doi.org/10.1145/3136625.
Liu, H., & Setiono, R. (1995). Chi2: feature selection and discretization of numeric attributes. In Proceedings of 7th IEEE International Conference on Tools with Artificial Intelligence (pp. 388–391). https://doi.org/10.1109/TAI.1995.479783.
Ma, S., & Huang, J. (2008). Penalized feature selection and classification in bioinformatics. Briefings in Bioinformatics, 9(5), 392–403. https://doi.org/10.1093/bib/bbn027.
Mahmoudi, A., Takerkart, S., Regragui, F., Boussaoud, D., & Brovelli, A. (2012). Multivoxel pattern analysis for fMRI data: A review. Computational and Mathematical Methods in Medicine, 2012, e961257. https://doi.org/10.1155/2012/961257.
McDuff, S. G. R., Frankel, H. C., & Norman, K. A. (2009). Multivoxel pattern analysis reveals increased memory targeting and reduced use of retrieved details during single-agenda source monitoring. Journal of Neuroscience, 29(2), 508–516. https://doi.org/10.1523/JNEUROSCI.3587-08.2009.
Meinshausen, N., & Bühlmann, P. (2010). Stability selection. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 72(4), 417–473. https://doi.org/10.1111/j.1467-9868.2010.00740.x.
Michel, V., Damon, C., & Thirion, B. (2008). Mutual information-based feature selection enhances fMRI brain activity classification. In 2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro (pp. 592–595). https://doi.org/10.1109/ISBI.2008.4541065.
Mwangi, B., Tian, T. S., & Soares, J. C. (2014). A review of feature reduction techniques in neuroimaging. Neuroinformatics, 12(2), 229–244. https://doi.org/10.1007/s12021-013-9204-3.
Nie, F., Xiang, S., Jia, Y., Zhang, C., & Yan, S. (2008). Trace ratio criterion for feature selection. In In AAAI (pp. 671–676).
Norman, K. A., Polyn, S. M., Detre, G. J., & Haxby, J. V. (2006). Beyond mind-reading: Multi-voxel pattern analysis of fMRI data. Trends in Cognitive Sciences, 10(9), 424–430. https://doi.org/10.1016/j.tics.2006.07.005.
O’Toole, A. J., Jiang, F., Abdi, H., & Haxby, J. V. (2005). Partially distributed representations of objects and faces in ventral temporal cortex. Journal of Cognitive Neuroscience, 17(4), 580–590. https://doi.org/10.1162/0898929053467550.
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., … Duchesnay, É. (2011). Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12(Oct), 2825–2830.
Peng, H., Long, F., & Ding, C. (2005). Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(8), 1226–1238. https://doi.org/10.1109/TPAMI.2005.159.
Polyn, S. M., Natu, V. S., Cohen, J. D., & Norman, K. A. (2005). Category-specific cortical activity precedes retrieval during memory search. Science, 310(5756), 1963–1966. https://doi.org/10.1126/science.1117645.
Ross, B. C. (2014). Mutual information between discrete and continuous data sets., Mutual Information between Discrete and Continuous Data Sets. PloS One, PLoS ONE, 9, 9(2, 2), e87357–e87357. https://doi.org/10.1371/journal.pone.0087357, https://doi.org/10.1371/journal.pone.0087357.
Saarimäki, H., Gotsopoulos, A., Jääskeläinen, I. P., Lampinen, J., Vuilleumier, P., Hari, R., Sams, M., & Nummenmaa, L. (2016). Discrete neural signatures of basic emotions. Cerebral Cortex, 26(6), 2563–2573. https://doi.org/10.1093/cercor/bhv086.
Saeys, Y., Inza, I., & Larrañaga, P. (2007). A review of feature selection techniques in bioinformatics. Bioinformatics, 23(19), 2507–2517. https://doi.org/10.1093/bioinformatics/btm344.
Saeys, Y., Abeel, T., & Peer, Y. V. de. (2008). Robust feature selection using ensemble feature selection techniques. In Machine Learning and Knowledge Discovery in Databases (pp. 313–325). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87481-2_21, Robust Feature Selection Using Ensemble Feature Selection Techniques.
Sayres, R., Ress, D., & Grill-Spector, K. (2005). Identifying distributed object representations in human Extrastriate visual cortex. In Proceedings of the 18th international conference on neural information processing systems (pp. 1169–1176). Cambridge: MIT Press Retrieved from http://dl.acm.org/citation.cfm?id=2976248.2976395.
Stiglic, G., & Kokol, P. (2010). Stability of ranked gene lists in large microarray analysis studies. BioMed Research International, 2010, e616358. https://doi.org/10.1155/2010/616358.
Tohka, J., Moradi, E., Huttunen, H., & Initiative, A. D. N. (2016). Comparison of feature selection techniques in machine learning for anatomical brain MRI in dementia. Neuroinformatics, 14(3), 279–296. https://doi.org/10.1007/s12021-015-9292-3.
Toloşi, L., & Lengauer, T. (2011). Classification with correlated features: Unreliability of feature ranking and solutions. Bioinformatics, 27(14), 1986–1994. https://doi.org/10.1093/bioinformatics/btr300.
Turney, P. (1995). Technical note: Bias and the quantification of stability. Machine Learning, 20(1–2), 23–33. https://doi.org/10.1023/A:1022682001417.
Vergara, J. R., & Estévez, P. A. (2014). A review of feature selection methods based on mutual information. Neural Computing and Applications, 24(1), 175–186. https://doi.org/10.1007/s00521-013-1368-0.
Wang, Y., Li, Z., Wang, Y., Wang, X., Zheng, J., Duan, X., & Chen, H. (2015). A Novel Approach for Stable Selection of Informative Redundant Features from High Dimensional fMRI Data. arXiv:1506.08301 [Cs, Stat]. Retrieved from http://arxiv.org/abs/1506.08301
Wright, S. (1965). The interpretation of population structure by F-statistics with special regard to Systems of Mating. Evolution, 19(3), 395–420. https://doi.org/10.1111/j.1558-5646.1965.tb01731.x.
Yan, S., Yang, X., Wu, C., Zheng, Z., & Guo, Y. (2014). Balancing the stability and predictive performance for multivariate voxel selection in fMRI study. In Brain Informatics and Health (pp. 90–99). Springer, Cham. https://doi.org/10.1007/978-3-319-09891-3_9, Balancing the Stability and Predictive Performance for Multivariate Voxel Selection in fMRI Study.
Zeithamova, D., de Araujo Sanchez, M.-A., & Adke, A. (2017). Trial timing and pattern-information analyses of fMRI data. NeuroImage, 153(Supplement C), 221–231. https://doi.org/10.1016/j.neuroimage.2017.04.025.
Zhao, Z., & Liu, H. (2007). Spectral feature selection for supervised and unsupervised learning. In Proceedings of the 24th international conference on machine learning (pp. 1151–1157). New York: ACM. https://doi.org/10.1145/1273496.1273641.
Zhao, Z., Wang, L., Liu, H., & Ye, J. (2013). On similarity preserving feature selection. IEEE Transactions on Knowledge and Data Engineering, 25(3), 619–632. https://doi.org/10.1109/TKDE.2011.222.
Acknowledgments
This research was supported by FWO-Flanders Odysseus II Award #G.OC44.13 N to WHA.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of Interest
We report no conflicts of interest.
Rights and permissions
About this article
Cite this article
Deraeve, J., Alexander, W.H. Fast, Accurate, and Stable Feature Selection Using Neural Networks. Neuroinform 16, 253–268 (2018). https://doi.org/10.1007/s12021-018-9371-3
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12021-018-9371-3