Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Confounding Effects on the Performance of Machine Learning Analysis of Static Functional Connectivity Computed from rs-fMRI Multi-site Data

  • Research
  • Published:
Neuroinformatics Aims and scope Submit manuscript

Abstract

Resting-state functional magnetic resonance imaging (rs-fMRI) is a non-invasive imaging technique widely used in neuroscience to understand the functional connectivity of the human brain. While rs-fMRI multi-site data can help to understand the inner working of the brain, the data acquisition and processing of this data has many challenges. One of the challenges is the variability of the data associated with different acquisitions sites, and different MRI machines vendors. Other factors such as population heterogeneity among different sites, with variables such as age and gender of the subjects, must also be considered. Given that most of the machine-learning models are developed using these rs-fMRI multi-site data sets, the intrinsic confounding effects can adversely affect the generalizability and reliability of these computational methods, as well as the imposition of upper limits on the classification scores. This work aims to identify the phenotypic and imaging variables producing the confounding effects, as well as to control these effects. Our goal is to maximize the classification scores obtained from the machine learning analysis of the Autism Brain Imaging Data Exchange (ABIDE) rs-fMRI multi-site data. To achieve this goal, we propose novel methods of stratification to produce homogeneous sub-samples of the 17 ABIDE sites, as well as the generation of new features from the static functional connectivity values, using multiple linear regression models, ComBat harmonization models, and normalization methods. The main results obtained with our statistical models and methods are an accuracy of 76.4%, sensitivity of 82.9%, and specificity of 77.0%, which are 8.8%, 20.5%, and 7.5% above the baseline classification scores obtained from the machine learning analysis of the static functional connectivity computed from the ABIDE rs-fMRI multi-site data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of Data

Data available on http://preprocessed-connectomes-project.org/abide/.

Code Availability

The code used to compute the results presented in this paper available on https://github.com/pcdslab/ASD-DiagNet-Confounds.

References

  • Abraham, A., Milham, M. P., Di Martino, A., et al. (2017). Deriving reproducible biomarkers from multi-site resting-state data: an autism-based example. NeuroImage, 147, 736–745.

    Article  PubMed  Google Scholar 

  • Aertsen, A., Gerstein, G., Habib, M., et al. (1989). Dynamics of neuronal firing correlation: modulation of “effective connectivity’’. Journal of neurophysiology, 61(5), 900–917.

    Article  CAS  PubMed  Google Scholar 

  • Almuqhim, F., & Saeed, F. (2021). ASD-SAENET: a sparse autoencoder, and deep-neural network model for detecting autism spectrum disorder (ASD) using fMRI data. Frontiers in Computational Neuroscience, 15, 27.

    Article  Google Scholar 

  • An, H. S., Moon, W. J., Ryu, J. K., et al. (2017). Inter-vender and test-retest reliabilities of resting-state functional magnetic resonance imaging: Implications for multi-center imaging studies. Magnetic resonance imaging, 44, 125–130.

    Article  PubMed  Google Scholar 

  • Arslan, S., Ktena, S. I., Makropoulos, A., et al. (2018). Human brain mapping: a systematic comparison of parcellation methods for the human cerebral cortex. NeuroImage, 170, 5–30. https://doi.org/10.1016/j.neuroimage.2017.04.014. https://www.sciencedirect.com/science/article/pii/S1053811917303026, segmenting the Brain.

  • Badhwar, A., Collin-Verreault, Y., Orban, P., et al. (2020). Multivariate consistency of resting-state fMRI connectivity maps acquired on a single individual over 2.5 years, 13 sites and 3 vendors. NeuroImage, 205, 116210.

  • Bassett, D. S., & Sporns, O. (2017). Network neuroscience. Nature Neuroscience, 20(3), 353–364. https://doi.org/10.1038/nn.4502. https://doi.org/10.1038/nn.4502

  • Benkarim, O., Paquola, C., Park, B., et al. (2022). Population heterogeneity in clinical cohorts affects the predictive accuracy of brain imaging. PLoS Biology, 20(4), e3001627.

  • Birn, R. M., Molloy, E. K., Patriat, R., et al. (2013). The effect of scan length on the reliability of resting-state fMRI connectivity estimates. Neuroimage, 83, 550–558.

    Article  PubMed  Google Scholar 

  • Biswal, B. B., Mennes, M., Zuo, X. N., et al. (2010). Toward discovery science of human brain function. Proceedings of the National Academy of Sciences, 107(10), 4734–4739.

    Article  CAS  Google Scholar 

  • Biswal, B., Zerrin Yetkin, F., Haughton, V. M., et al. (1995). Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magnetic resonance in medicine, 34(4), 537–541.

    Article  CAS  PubMed  Google Scholar 

  • Brown, G. G., Mathalon, D. H., Stern, H., et al. (2011). Multisite reliability of cognitive bold data. Neuroimage, 54(3), 2163–2175.

    Article  PubMed  Google Scholar 

  • Bullmore, E. T., & Bassett, D. S. (2011). Brain graphs: graphical models of the human brain connectome. Annual Review of Clinical Psychology, 7(1), 113–140. https://doi.org/10.1146/annurev-clinpsy-040510-143934. pMID: 21128784. https://arxiv.org/abs/https://doi.org/10.1146/annurev-clinpsy-040510-143934

  • Chavez, S., Viviano, J., Zamyadi, M., et al. (2018). A novel DTI-QA tool: automated metric extraction exploiting the sphericity of an agar filled phantom. Magnetic resonance imaging, 46, 28–39.

    Article  PubMed  Google Scholar 

  • Chen, C. P., Keown, C. L., Jahedi, A., et al. (2015). Diagnostic classification of intrinsic functional connectivity highlights somatosensory, default mode, and visual regions in Autism. NeuroImage: Clinical, 8, 238–245.

  • Chen, C. P., Keown, C. L., & Müller, R. A. (2013). Towards understanding autism risk factors: a classification of brain images with support vector machines. International Journal of Semantic Computing, 7(2), 205.

    Article  Google Scholar 

  • Chen, J., Liu, J., Calhoun, V. D., et al. (2014). Exploration of scanning effects in multi-site structural MRI studies. Journal of neuroscience methods, 230, 37–50.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen, A. A., Srinivasan, D., Pomponio, R., et al. (2022). Harmonizing functional connectivity reduces scanner effects in community detection. NeuroImage, 256, 119198.

    Article  PubMed  Google Scholar 

  • Combrisson, E., & Jerbi, K. (2015). Exceeding chance level by chance: the caveat of theoretical chance levels in brain signal classification and statistical assessment of decoding accuracy. Journal of neuroscience methods, 250, 126–136.

    Article  PubMed  Google Scholar 

  • Corder, G. W., & Foreman, D. I. (2014). Nonparametric statistics: a step-by-step approach. Hoboken, New Jersey: John Wiley and Sons.

    Google Scholar 

  • Cox, R. W., & Jesmanowicz, A. (1999). Real-time 3D image registration for functional MRI. Magnetic Resonance in Medicine: An Official Journal of the International Society for Magnetic Resonance in Medicine, 42(6), 1014–1018.

    Article  CAS  Google Scholar 

  • Craddock, C., Benhajali, Y., Chu, C., et al. (2013). The neuro bureau preprocessing initiative: open sharing of preprocessed neuroimaging data and derivatives. Frontiers in Neuroinformatics, 7, 3.

    Google Scholar 

  • Craddock, R. C., James, G. A., Holtzheimer, P. E., III., et al. (2012). A whole brain fMRI atlas generated via spatially constrained spectral clustering. Human brain mapping, 33(8), 1914–1928.

    Article  PubMed  Google Scholar 

  • Dansereau, C., Benhajali, Y., Risterucci, C., et al. (2017). Statistical power and prediction accuracy in multisite resting-state fMRI connectivity. Neuroimage, 149, 220–232.

    Article  PubMed  Google Scholar 

  • Di Martino, A., O’connor, D., Chen, B., et al. (2017). Enhancing studies of the connectome in autism using the autism brain imaging data exchange II. Scientific data, 4(1), 1–15.

    Article  Google Scholar 

  • Di Martino, A., Yan, C. G., Li, Q., et al. (2014). The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism. Molecular psychiatry, 19(6), 659–667.

    Article  PubMed  Google Scholar 

  • Dukart, J., Schroeter, M. L., Mueller, K., et al. (2011). Age correction in dementia-matching to a healthy brain. PloS one, 6(7), e22193.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eslami, T., Mirjalili, V., Fong, A., et al. (2019). ASD-diagnet: a hybrid learning approach for detection of autism spectrum disorder using fMRI data. Frontiers in Neuroinformatics, 13, 70. https://doi.org/10.3389/fninf.2019.00070. https://www.frontiersin.org/article/10.3389/fninf.2019.00070

  • Faskowitz, J., Betzel, R. F., & Sporns, O. (2022). Edges in brain networks: Contributions to models of structure and function. Network Neuroscience, 6(1), 1–28.

    PubMed  PubMed Central  Google Scholar 

  • Faskowitz, J., Esfahlani, F. Z., Jo, Y., et al. (2020). Edge-centric functional network representations of human cerebral cortex reveal overlapping system-level architecture. Nature Neuroscience, 23(12), 1644–1654. https://doi.org/10.1038/s41593-020-00719-y

    Article  CAS  PubMed  Google Scholar 

  • Feis, R. A., Smith, S. M., Filippini, N., et al. (2015). ICA-based artifact removal diminishes scan site differences in multi-center resting-state fMRI. Frontiers in neuroscience, 9, 395.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fisher, R. A. (1915). Frequency distribution of the values of the correlation coefficient in samples from an indefinitely large population. Biometrika, 10(4), 507–521.

    Google Scholar 

  • Forsyth, J. K., McEwen, S. C., Gee, D. G., et al. (2014). Reliability of functional magnetic resonance imaging activation during working memory in a multi-site study: analysis from the North American Prodrome longitudinal study. Neuroimage, 97, 41–52.

    Article  PubMed  Google Scholar 

  • Fortin, J. P., Cullen, N., Sheline, Y. I., et al. (2018). Harmonization of cortical thickness measurements across scanners and sites. Neuroimage, 167, 104–120.

    Article  PubMed  Google Scholar 

  • Fortin, J. P., Parker, D., Tunç, B., et al. (2017). Harmonization of multi-site diffusion tensor imaging data. Neuroimage, 161, 149–170.

    Article  PubMed  Google Scholar 

  • Friedman, L., Glover, G. H., Consortium, F., et al. (2006). Reducing interscanner variability of activation in a multicenter fMRI study: controlling for signal-to-fluctuation-noise-ratio (SFNR) differences. Neuroimage, 33(2), 471–481.

  • Friedman, L., Stern, H., Brown, G. G., et al. (2008). Test-retest and between-site reliability in a multicenter fMRI study. Human brain mapping, 29(8), 958–972.

    Article  PubMed  Google Scholar 

  • Glover, G. H., Mueller, B. A., Turner, J. A., et al. (2012). Function biomedical informatics research network recommendations for prospective multicenter functional MRI studies. Journal of Magnetic Resonance Imaging, 36(1), 39–54.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gountouna, V. E., Job, D. E., McIntosh, A. M., et al. (2010). Functional magnetic resonance imaging (fMRI) reproducibility and variance components across visits and scanning sites with a finger tapping task. Neuroimage, 49(1), 552–560.

    Article  PubMed  Google Scholar 

  • Gradin, V., Gountouna, V. E., Waiter, G., et al. (2010). Between-and within-scanner variability in the calibrain study n-back cognitive task. Psychiatry Research: Neuroimaging, 184(2), 86–95.

    Article  Google Scholar 

  • Guo, X., Dominick, K. C., Minai, A. A., et al. (2017). Diagnosing autism spectrum disorder from brain resting-state functional connectivity patterns using a deep neural network with a novel feature selection method. Frontiers in neuroscience, 11, 460.

    Article  PubMed  PubMed Central  Google Scholar 

  • Heinsfeld, A. S., Franco, A. R., Craddock, R. C., et al. (2018). Identification of autism spectrum disorder using deep learning and the abide dataset. NeuroImage: Clinical, 17, 16–23.

    Article  PubMed  Google Scholar 

  • Iidaka, T. (2015). Resting state functional magnetic resonance imaging and neural network classified autism and control. Cortex, 63, 55–67.

    Article  PubMed  Google Scholar 

  • Jenkinson, M., & Chappell, M. (2018). Introduction to neuroimaging analysis. Oxford University Press.

    Google Scholar 

  • Johnson, W. E., Li, C., & Rabinovic, A. (2007). Adjusting batch effects in microarray expression data using empirical bayes methods. Biostatistics, 8(1), 118–127.

    Article  PubMed  Google Scholar 

  • Kam, T. E., Suk, H. I., & Lee, S. W. (2017). Multiple functional networks modeling for autism spectrum disorder diagnosis. Human brain mapping, 38(11), 5804–5821.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kassraian-Fard, P., Matthis, C., Balsters, J. H., et al. (2016). Promises, pitfalls, and basic guidelines for applying machine learning classifiers to psychiatric imaging data, with autism as an example. Frontiers in psychiatry, 7, 177.

    Article  PubMed  PubMed Central  Google Scholar 

  • Khosla, M., Jamison, K., Kuceyeski, A., et al. (2019). Ensemble learning with 3D convolutional neural networks for functional connectome-based prediction. NeuroImage, 199, 651–662.

    Article  PubMed  Google Scholar 

  • Kong, Y., Gao, J., Xu, Y., et al. (2019). Classification of autism spectrum disorder by combining brain connectivity and deep neural network classifier. Neurocomputing, 324, 63–68.

    Article  Google Scholar 

  • Kostro, D., Abdulkadir, A., Durr, A., et al. (2014). Correction of inter-scanner and within-subject variance in structural MRI based automated diagnosing. NeuroImage, 98, 405–415.

    Article  PubMed  Google Scholar 

  • Li, X., Gu, Y., Dvornek, N., et al. (2020). Multi-site fMRI analysis using privacy-preserving federated learning and domain adaptation: abide results. Medical Image Analysis, 65(101), 765.

    Google Scholar 

  • Lurie, D. J., Kessler, D., Bassett, D. S., et al. (2020). Questions and controversies in the study of time-varying functional connectivity in resting fMRI. Network Neuroscience, 4(1), 30–69.

    Article  PubMed  PubMed Central  Google Scholar 

  • Marengo-Rowe, A. J. (2006). Structure-function relations of human hemoglobins. In Baylor University Medical Center Proceedings (pp. 239–245). Taylor & Francis.

  • Messé, A. (2020). Parcellation influence on the connectivity-based structure-function relationship in the human brain. Human Brain Mapping, 41(5), 1167–1180.

    Article  PubMed  Google Scholar 

  • Mirzaalian, H., Ning, L., Savadjiev, P., et al. (2016). Inter-site and inter-scanner diffusion MRI data harmonization. NeuroImage, 135, 311–323.

    Article  CAS  PubMed  Google Scholar 

  • Neyman, J. (1992). On the two different aspects of the representative method: The method of stratified sampling and the method of purposive selection. In Breakthroughs in Statistics (pp. 123–150). Springer.

  • Nielsen, J. A., Zielinski, B. A., Fletcher, P. T., et al. (2013). Multisite functional connectivity MRI classification of autism: Abide results. Frontiers in human neuroscience, 7, 599.

    Article  PubMed  PubMed Central  Google Scholar 

  • Noble, S., Scheinost, D., Finn, E. S., et al. (2017). Multisite reliability of MR-based functional connectivity. Neuroimage, 146, 959–970.

    Article  PubMed  Google Scholar 

  • Ogawa, S., Lee, T. M., Nayak, A. S., et al. (1990). Oxygenation-sensitive contrast in magnetic resonance image of rodent brain at high magnetic fields. Magnetic resonance in medicine, 14(1), 68–78.

    Article  CAS  PubMed  Google Scholar 

  • Ogawa, S., Menon, R., Tank, D. W., et al. (1993). Functional brain mapping by blood oxygenation level-dependent contrast magnetic resonance imaging. A comparison of signal characteristics with a biophysical model. Biophysical Journal, 64(3), 803–812.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Omri, N., Al Masry, Z., Mairot, N., et al. (2021). Towards an adapted phm approach: Data quality requirements methodology for fault detection applications. Computers in Industry, 127, 103414.

    Article  Google Scholar 

  • Parisot, S., Ktena, S. I., Ferrante, E., et al. (2018). Disease prediction using graph convolutional networks: application to autism spectrum disorder and alzheimer’s disease. Medical image analysis, 48, 117–130.

    Article  PubMed  Google Scholar 

  • Parsons, V. L. (2014). Stratified sampling (pp. 1–11). Wiley StatsRef: Statistics Reference Online.

    Google Scholar 

  • Plitt, M., Barnes, K. A., & Martin, A. (2015). Functional connectivity classification of autism identifies highly predictive brain features but falls short of biomarker standards. NeuroImage: Clinical, 7, 359–366.

    Article  PubMed  Google Scholar 

  • Poline, J. B., Breeze, J. L., Ghosh, S., et al. (2012). Data sharing in neuroimaging research. Frontiers in neuroinformatics, 6, 9.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rao, A., Monteiro, J. M., Mourao-Miranda, J., et al. (2017). Predictive modelling using neuroimaging data in the presence of confounds. NeuroImage, 150, 23–49.

    Article  PubMed  Google Scholar 

  • Reardon, A. M., Li, K., & Hu, X. P. (2021). Improving between-group effect size for multi-site functional connectivity data via site-wise de-meaning. Frontiers in computational neuroscience, 15(762781), 111.

    Google Scholar 

  • Reiter, M. A., Jahedi, A., Fredo, A., et al. (2021). Performance of machine learning classification models of autism using resting-state fMRI is contingent on sample heterogeneity. Neural Computing and Applications, 33(8), 3299–3310.

    Article  PubMed  Google Scholar 

  • Sadeghi, M., Khosrowabadi, R., Bakouie, F., et al. (2017). Screening of autism based on task-free fMRI using graph theoretical approach. Psychiatry Research: Neuroimaging, 263, 48–56.

    Article  PubMed  Google Scholar 

  • Sherkatghanad, Z., Akhondzadeh, M., Salari, S., et al. (2020). Automated detection of autism spectrum disorder using a convolutional neural network. Frontiers in neuroscience, 13, 1325.

    Article  PubMed  PubMed Central  Google Scholar 

  • Shinohara, R. T., Oh, J., Nair, G., et al. (2017). Volumetric analysis from a harmonized multisite brain MRI study of a single subject with multiple sclerosis. American Journal of Neuroradiology, 38(8), 1501–1509.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh, D., & Singh, B. (2020). Investigating the impact of data normalization on classification performance. Applied Soft Computing, 97(105), 524.

    Google Scholar 

  • Sporns, O. (2012). From simple graphs to the connectome: networks in neuroimaging. NeuroImage, 62(2), 881–886. https://doi.org/10.1016/j.neuroimage.2011.08.085. https://www.sciencedirect.com/science/article/pii/S1053811911010172, 20 years of fMRI.

  • Sporns, O., Chialvo, D. R., Kaiser, M., et al. (2004). Organization, development and function of complex brain networks. Trends in cognitive sciences, 8(9), 418–425.

    Article  PubMed  Google Scholar 

  • Sporns, O., Tononi, G., & Kötter, R. (2005). The human connectome: a structural description of the human brain. PLoS computational biology, 1(4), e42.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sprent, P., & Smeeton, N. C. (2016). Applied nonparametric statistical methods (pp. 33487–2742). Boca Raton, FL: CRC Press.

    Book  Google Scholar 

  • Stam, C. J., & Reijneveld, J. C. (2007). Graph theoretical analysis of complex networks in the brain. Nonlinear Biomedical Physics, 1(1), 3. https://doi.org/10.1186/1753-4631-1-3

    Article  PubMed  PubMed Central  Google Scholar 

  • Tamhane, A., & Dunlop, D. (2000). Statistics and data analysis: from elementary to intermediate (p. 07458). Upper Sadle River, NJ: Prentice-Hall.

    Google Scholar 

  • Torbati, M. E., Minhas, D. S., Ahmad, G., et al. (2021). A multi-scanner neuroimaging data harmonization using ravel and combat. NeuroImage, 245, 118703.

    Article  Google Scholar 

  • van de Ven, V. G., Formisano, E., Prvulovic, D., et al. (2004). Functional connectivity as revealed by spatial independent component analysis of fMRI measurements during rest. Human brain mapping, 22(3), 165–178.

    Article  PubMed  PubMed Central  Google Scholar 

  • van den Heuvel, M. P., Stam, C. J., Boersma, M., et al. (2008). Small-world and scale-free organization of voxel-based resting-state functional connectivity in the human brain. Neuroimage, 43(3), 528–539.

    Article  PubMed  Google Scholar 

  • Van Horn, J. D., & Toga, A. W. (2009). Multisite neuroimaging trials. Current opinion in neurology, 22(4), 370.

    Article  PubMed  PubMed Central  Google Scholar 

  • VanderWeele, T. J., & Shpitser, I. (2013). On the definition of a confounder. Annals of statistics, 41(1), 196.

    Article  PubMed  PubMed Central  Google Scholar 

  • Vigneshwaran, S., Mahanand, B., Suresh, S., et al. (2013). Autism spectrum disorder detection using projection based learning meta-cognitive RBF network. In IEEE (Ed.), The 2013 International Joint Conference on Neural Networks (IJCNN), IEEE (pp. 1–8). IEEE Press, New York, USA.

  • Wang, C., Xiao, Z., & Wu, J. (2019). Functional connectivity-based classification of autism and control using svm-rfecv on RS-fMRI data. Physica Medica, 65, 99–105.

    Article  PubMed  Google Scholar 

  • Yamashita, A., Yahata, N., Itahashi, T., et al. (2019). Harmonization of resting-state functional MRI data across multiple imaging sites via the separation of site differences into sampling bias and measurement bias. PLoS biology, 17(4), e3000042.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu, M., Linn, K. A., Cook, P. A., et al. (2018). Statistical harmonization corrects site effects in functional connectivity measurements from multi-site fMRI data. Human brain mapping, 39(11), 4213–4227.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhu, W., Zeng, N., Wang, N., et al. (2010). Sensitivity, specificity, accuracy, associated confidence interval and roc analysis with practical sas implementations. NESUG proceedings: health care and life sciences, Baltimore, Maryland, 19, 67.

    CAS  Google Scholar 

Download references

Funding

This research is funded by National Science Foundation (NSF) award No. TI-2213951. In addition, part of this research is funded by supplemental grant to NIH NIGMS R01GM134384. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author (s) and do not necessarily reflect the views of the National Science Foundation (NSF) or National Institutes of Health (NIH).

Author information

Authors and Affiliations

Authors

Contributions

O.A.- Involved in the conception, design, writing code, computation and analysis of results, and writing the first draft of the manuscript; Z.A.M. Involved in the conception, design, analysis of results, and revising the manuscript; F.S. - Involved in the conception, design, analysis of results, and revising the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Fahad Saeed.

Ethics declarations

Conflict of Interest

The authors declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Artiles, O., Al Masry, Z. & Saeed, F. Confounding Effects on the Performance of Machine Learning Analysis of Static Functional Connectivity Computed from rs-fMRI Multi-site Data. Neuroinform 21, 651–668 (2023). https://doi.org/10.1007/s12021-023-09639-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12021-023-09639-1

Keywords