Abstract
The advanced gravitational wave (GW) detector network has started routine detection of signals from merging compact binaries. Data indicate that in a fair fraction of these sources, at least one component was a neutron star, bringing with it the possibility of electromagnetic (EM) radiation. So far, a confirmed link between EM and GW radiation has been established for only one source, GW170817. Joint analysis of broadband multi-wavelength data and the GW signal have yielded rich information spanning fields as varied as jet physics, cosmology and nucleosynthesis. Here, we discuss the importance of such joint observations, as well as current and near-future efforts to discover and study more EM counterparts to GW sources.
Similar content being viewed by others
Notes
GW150914 was detected 4 days before the official start of O1.
References
Abadie J., Abbott B. P., Abbott R., et al. 2010, Classical and Quantum Gravity, 27, 173001. https://doi.org/10.1088/0264-9381/27/17/173001
Abbott B. P., Abbott R., Abbott T., et al. 2019, Physical Review X, 9, https://doi.org/10.1103/physrevx.9.031040
Abbott B. P., Abbott R., Abbott T. D., et al. 2016, Physical Review Letters, 116, 061102. https://doi.org/10.1103/PhysRevLett.116.061102
Abbott B. P., Abbott R., Abbott T. D., et al. 2017a, Physical Review Letters, 119, 161101. https://doi.org/10.1103/PhysRevLett.119.161101
Abbott B. P., Abbott R., Abbott T. D., et al. 2017b, 848, L13. https://doi.org/10.3847/2041-8213/aa920c
Abbott B. P., Abbott R., Abbott T. D., et al. 2017c, The Astrophysical Journal Letters, 848, L12. https://doi.org/10.3847/2041-8213/aa91c9
Abbott B. P., Abbott R., Abbott T. D., et al. 2017d, Nature, 551, 85. https://doi.org/10.1038/nature24471
Abbott B. P., Abbott R., Abbott T. D., et al. 2018, Physical Review Letters, 121, 161101. https://doi.org/10.1103/PhysRevLett.121.161101
Abbott B. P., Abbott R., Abbott T. D., et al. 2019, Physical Review X, 9, 031040. https://doi.org/10.1103/PhysRevX.9.031040
Abbott R., Abbott T. D., Abraham S., et al. 2020, The Astrophysical Journal Letters, 896, L44. https://doi.org/10.3847/2041-8213/ab960f
Abbott R., Abbott T. D., Abraham S., et al. 2021a, Physical Review X, 11, 021053. https://doi.org/10.1103/PhysRevX.11.021053
Abbott R., Abbott T. D., Abraham S., et al. 2021b, The Astrophysical Journal Letters, 913, L7. https://doi.org/10.3847/2041-8213/abe949
Abbott R., Abbott T. D., Abraham S., et al. 2021c, The Astrophysical Journal Letters, 915, L5. https://doi.org/10.3847/2041-8213/ac082e
Abbott R., Abbott T. D., Abraham S., et al. 2021d, Physical Review D, 103, 122002. https://doi.org/10.1103/PhysRevD.103.122002
Andreoni I., Coughlin M. W., Kool E. C., et al. 2021, The Astrophysical Journal, 918, 63. https://doi.org/10.3847/1538-4357/ac0bc7
Arimoto M., Asada H., Cherry M. L., et al. 2021, Gravitational Wave Physics and Astronomy in the nascent era. https://arxiv.org/abs/2104.02445
Bekenstein J. D. 2004, Physical Review D, 70, 083509. https://doi.org/10.1103/PhysRevD.70.083509
Bhalerao V., Kasliwal M. M., Bhattacharya D., et al. 2017, The Astrophysical Journal, 845, 152. https://doi.org/10.3847/1538-4357/aa81d2
Boran S., Desai S., Kahya E. O., Woodard R. P. 2018, Physical Review D, 97, 041501. https://doi.org/10.1103/PhysRevD.97.041501
Burns E. 2020, Living Reviews in Relativity, 23. https://doi.org/10.1007/s41114-020-00028-7
Chattopadhyay T., Falcon A. D., Burrows D. N., Fox D. B., Palmer D. 2018, Proceedings of SPIE – The International Society for Optical Engineering, 10699. https://doi.org/10.1117/12.2314274
Chruslinska M., Belczynski K., Klencki J., Benacquista M. 2018, Monthly Notices of the Royal Astronomical Society, 474, 2937. https://doi.org/10.1093/mnras/stx2923
Collins H. 2004, Gravity’s shadow: The search for gravitational waves
Connaughton V., Burns E., Goldstein A., et al. 2016, The Astrophysical Journal Letters, 826, L6. https://doi.org/10.3847/2041-8205/826/1/L6
Coulter D. A., Foley R. J., Kilpatrick C. D., et al. 2017, Science, 358, 1556. https://doi.org/10.1126/science.aap9811
Côté B., Fryer C. L., Belczynski K., et al. 2018, The Astrophysical Journal, 855, 99. https://doi.org/10.3847/1538-4357/aaad67
Della Valle M., Guetta D., Cappellaro E., et al. 2018, Monthly Notices of the Royal Astronomical Society, 481, 4355. https://doi.org/10.1093/mnras/sty2541
Dewdney P. E., Hall P. J., Schilizzi R. T., Lazio T. J. L. W. 2009, IEEE Proceedings, 97, 1482. https://doi.org/10.1109/JPROC.2009.2021005
Di Valentino E., Mena O., Pan S., et al. 2021, Classical and Quantum Gravity, 38, 153001. https://doi.org/10.1088/1361-6382/ac086d
Dichiara S., Troja E., O’Connor B., et al. 2020, Monthly Notices of the Royal Astronomical Society, 492, 5011. https://doi.org/10.1093/mnras/staa124
Dietrich T., Coughlin M. W., Pang P. T. H., et al. 2020, Science, 370, 1450. https://doi.org/10.1126/science.abb4317
Dominik M., Berti E., O’Shaughnessy R., et al. 2015, The Astrophysical Journal, 806, 263. https://doi.org/10.1088/0004-637X/806/2/263
Einstein A. 1916, Sitzungsberichte der Königlich PreuBischen Akademie der Wissenschaften zu Berlin (Math. Phys.), 1916, 688
Fong W., Berger E., Margutti R., Zauderer B. A. 2015, The Astrophysical Journal, 815, 102. https://doi.org/10.1088/0004-637X/815/2/102
Forward R. L. 1978, Physical Review, D17, 379. https://doi.org/10.1103/PhysRevD.17.379
Foucart F., Hinderer T., Nissanke S. 2018, Physical Review D, 98, 081501. https://doi.org/10.1103/PhysRevD.98.081501
Goldstein A., Veres P., Burns E., et al. 2017, The Astrophysical Journal Letters, 848, L14. https://doi.org/10.3847/2041-8213/aa8f41
Grado A. 2019, Nuclear and Particle Physics Proceedings, 306, 42. https://doi.org/10.1016/j.nuclphysbps.2019.07.006
Graham M. J., Ford K. E. S., McKernan B., et al. 2020, The Astrophysical Journal, 124, 251102. https://doi.org/10.1103/PhysRevLett.124.251102
Haiman Z., Kocsis B., Menou K., Lippai Z., Frei Z. 2009, Classical and Quantum Gravity, 26, 094032. https://doi.org/10.1088/0264-9381/26/9/094032
Hallinan G., Corsi A., Mooley K. P., et al. 2017, Science, 358, 1579. https://doi.org/10.1126/science.aap9855
Hansen B. M. S., Lyutikov M. 2001, Monthly Notices of the Royal Astronomical Society, 322, 695. https://doi.org/10.1046/j.1365-8711.2001.04103.x
Hotokezaka K., Beniamini P., Piran T. 2018, International Journal of Modern Physics D, 27, 1842005. https://doi.org/10.1142/S0218271818420051
Hotokezaka K., Nissanke S., Hallinan G., et al. 2016, The Astrophysical Journal, 831, 190. https://doi.org/10.3847/0004-637x/831/2/190
Hu L., Wu X., Andreoni I., et al. 2017, Science Bulletin, 62, 1433. https://doi.org/10.1016/j.scib.2017.10.006
Hulse R. A., Taylor J. H. 1975, The Astrophysical Journal Letters, 195, L51. https://doi.org/10.1086/181708
IceCube Collaboration, Aartsen M. G., Ackermann M., et al. 2018, Science, 361, eaat1378. https://doi.org/10.1126/science.aat1378
Kasliwal M. M., Korobkin O., Lau R. M., Wollaeger R., Fryer C. L. 2017a, The Astrophysical Journal Letters, 843, L34. https://doi.org/10.3847/2041-8213/aa799d
Kasliwal M. M., Nakar E., Singer L. P., et al. 2017b, Science, 358, 1559. https://doi.org/10.1126/science.aap9455
Kasliwal M. M., Anand S., Ahumada T., et al. 2020, The Astrophysical Journal, 905, 145. https://doi.org/10.3847/1538-4357/abc335
Kelly B. J., Baker J. G., Etienne Z. B., Giacomazzo B., Schnittman J. 2017, Physical Review D, 96, 123003. https://doi.org/10.1103/PhysRevD.96.123003
Kim C., Perera B. B. P., McLaughlin M. A. 2015, Monthly Notices of the Royal Astronomical Society, 448, 928. https://doi.org/10.1093/mnras/stu2729
Margutti R., Berger E., Fong W., et al. 2017, The Astrophysical Journal Letters, 848, L20. https://doi.org/10.3847/2041-8213/aa9057
McKinnon M., Beasley A., Murphy E., et al. 2019, in Bulletin of the American Astronomical Society, 51, 81
Metzger B. D. 2019, Living Reviews in Relativity, 23. https://doi.org/10.1007/s41114-019-0024-0
Metzger B. D., Berger E. 2012, The Astrophysical Journal, 746, 48. https://doi.org/10.1088/0004-637X/746/1/48
Miller A. I. 1973, Archive for History of Exact Sciences, 10, 207
Misner C. W., Thorne K. S., Wheeler J. A. 1973, Gravitation (San Francisco: W. H. Freeman)
Mooley K. P., Nakar E., Hotokezaka K., et al. 2017, Nature, 554, 207. https://doi.org/10.1038/nature25452
Nakar E., Piran T. 2011, Nature, 478, 82. https://doi.org/10.1038/nature10365
Oganesyan G., Nava L., Ghirlanda G., Celotti A. 2018, Astronomy & Astrophysics, 616, A138. https://doi.org/10.1051/0004-6361/201732172
Ott C. D. 2009, Classical and Quantum Gravity, 26, 063001. https://doi.org/10.1088/0264-9381/26/6/063001
Paul J., Wei J., Basa S., Zhang S.-N. 2011, Comptes Rendus Physique, 12, 298. https://doi.org/10.1016/j.crhy.2011.01.009
Piran T., Nakar E., Rosswog S. 2013, Monthly Notices of the Royal Astronomical Society, 430, 2121. https://doi.org/10.1093/mnras/stt037
Poincaré H. 1906, Comptes Rendus de l’Academie des Sciences, 21, 129. https://doi.org/10.1007/BF03013466
Pol N., McLaughlin M., Lorimer D. R. 2020, Research Notes of the American Astronomical Society, 4, 22. https://doi.org/10.3847/2515-5172/ab7307
Prabhu T. P. 2000, Bulletin of the Astronomical Society of India, 28, 233
Pshirkov M., Postnov K. 2010, Astrophysics and Space Science, 330. https://doi.org/10.1007/s10509-010-0395-x
Racusin J., Perkins J. S., Briggs M. S., et al. 2017, BurstCube: A CubeSat for Gravitational Wave Counterparts. https://arxiv.org/abs/1708.09292
Saulson P. R. 1995, Fundamentals of interferometric gravitational wave detectors
Savchenko V., Ferrigno C., Kuulkers E., et al. 2017, The Astrophysical Journal Letters, 848, L15. https://doi.org/10.3847/2041-8213/aa8f94
Schnittman J. D. 2011, Classical and Quantum Gravity, 28, 094021. https://doi.org/10.1088/0264-9381/28/9/094021
Schutz B. F. 1986, Nature, 323, 310. https://doi.org/10.1038/323310a0
Schutz B. F. 2011, Classical and Quantum Gravity, 28, 125023. https://doi.org/10.1088/0264-9381/28/12/125023
Taylor J. H., Weisberg J. M. 1982, The Astrophysical Journal, 253, 908. https://doi.org/10.1086/159690
The LIGO Scientific Collaboration, the Virgo Collaboration, Abbott R., et al. 2021a. https://arxiv.org /abs/2108.01045
The LIGO Scientific Collaboration, the Virgo Collaboration, the KAGRA Collaboration, et al. 2021b. https://arxiv.org/abs/2111.03606
Troja E., Piro L., van Eerten H., et al. 2017, Nature, 551, 71. https://doi.org/10.1038/nature24290
Werner N., Řípa J., Pál A., et al. 2018, CAMELOT: Cubesats Applied for MEasuring and LOcalising Transients – Mission Overview. https://arxiv.org/abs/1806.03681
Zhang B. 2019, Frontiers of Physics, 14, 64402. https://doi.org/10.1007/s11467-019-0913-4
Zhang D., Li X., Xiong S., et al. 2019, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 921, 8. https://doi.org/10.1016/j.nima.2018.12.032
Zhu J.-P., Wu S., Yang Y.-P., et al. 2021, The Astrophysical Journal, 921, 156. https://doi.org/10.3847/1538-4357/ac19a7
Acknowledgments
The authors are grateful to observatory staff around the globe whose hard work made these historical observations possible. There are many publications on this subject and the authors sincerely apologize to those colleagues whose work could not be discussed here.
Author information
Authors and Affiliations
Corresponding author
Additional information
This article is part of the Special Issue on “Astrophysical Jets and Observational Facilities: A National Perspective”.
Rights and permissions
About this article
Cite this article
Singhal, A., Palit, S., Bala, S. et al. Gravitational waves and electromagnetic transients. J Astrophys Astron 43, 53 (2022). https://doi.org/10.1007/s12036-022-09841-8
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s12036-022-09841-8