Abstract
A unified and empirically adequate microscopic theory of novel pseudogap phenomena and Bose-liquid superconductivity and superfluidity in high-\(T_c\) cuprates and other systems is developed based on the original ideas of the pseudogap state and unusual superconducting/superfluid states of matter. This theory establishes the following laws: (i) the high-\(T_c\) cuprates and other systems with low Fermi energies \(\varepsilon _F\sim \varepsilon _A\) (where \(\varepsilon _A\) is the energy of the attractive interaction between fermionic quasiparticles) are bosonic superconductors and superfluids exhibiting pseudogap behavior above the superconducting/superfluid transition temperature \(T_c\) and a \(\lambda \)-like phase transition at \(T_c\), (ii) the pseudogap state and bosonic Cooper pairs in such systems (with \(\varepsilon _F\lesssim 2\varepsilon _A\) and Bardeen–Cooper–Schrieffer (BCS)-like gap \(\Delta _F > rsim 0.17\varepsilon _F\)) are formed above \(T_c\), (iii) only a minority of preformed bosons condenses into a Bose superfluid at \(T_c\) and (iv) only the systems with \(\varepsilon _F>>\varepsilon _A>>\Delta _F\) become BCS-type conventional or topological fermionic superconductors and superfluids. A modified BCS-like model describes the precursor Cooper pairing of fermionic quasiparticles and the formation of bosonic Cooper pairs above \(T_c\). The criteria for the bosonization of Cooper pairs and fermion–boson transitions are formulated. The mean-field theory describing new laws of condensation of attracting bosons into Bose superfluids below \(T_c\) is presented. The proposed microscopic theory explains all the emerging pseudogap behaviors and unusual superconducting/superfluid states and properties of high-\(T_c\) materials and other systems. In high-\(T_c\) cuprates, the unconventional electron–phonon interactions and polaronic effects give rise to in-gap states, Fermi-surface reconstruction, two distinct pseudogaps and unusual normal-state properties, a quantum critical point and crossover from BCS superconductivity to Bose-liquid superconductivity. The theory of three-dimensional (3D) and two-dimensional (2D) Bose superfluids describes fairly well the novel superconducting states (i.e., the so-called A and B phases below \(T_c\) and an extended A phase and related vortex-like state above \(T_c\)) and properties of high-\(T_c\) cuprates (e.g., \(\lambda \)-like transition at \(T_c\), first-order phase transition at lower temperatures and other unusual features) in accordance with the experimental data. The reasons for suppression and enhancement of superconductivity by disorders in high-\(T_c\) cuprates are discussed. Strongly enhanced 2D Bose-liquid superconductivity emerging within a 3D cuprate superconductor (with the highest bulk \(T_c\)) persists up to room temperature in multi-lamellar blocks and at grain boundaries and interfaces. Most enhanced 3D Bose-liquid superconductivity can emerge at room temperature in high-\(T_c\) hydrides under high pressures. Superconducting/superfluid states and properties of heavy-fermion and organic compounds, ruthenate \((\textrm{Sr}_{2}\textrm{RuO}_{4})\) and possibly high-\(T_c\) hydrides, quantum liquids (\(^3\)He and \(^4\hbox {He}\)) and atomic Fermi gases are also well explained by the proposed theory of Bose superfluids. Finally, new criteria and principles of unconventional superconductivity and superfluidity are formulated.
Similar content being viewed by others
References
C Kittel, Introduction to Solid State Physics (Nauka, Moscow, 1978)
A A Abrikosov, Fundamentals of the Theory of Metals (Nauka, Moscow 1987)
J Bardeen, L N Cooper and J R Schrieffer, Phys. Rev. 108, 1175 (1957)
J G Bednorz and K A Müller, Z. Phys. B 64, 189 (1986)
M K Wu, J R Ashburn, C J Torng, P H Hor, R L Meng, L Gao, Z J Huang, Y Q Wang and C W Chu, Phys. Rev. Lett. 58, 908 (1987)
B Batlogg, H Y Hwang, H Takagi, R J Cava, H L Kao and J Kwo, Physica C 235–240, 130 (1994)
H Ding, T Yokoya, J C Campuzano, T Takahashi, M Randeria, M R Norman, T Mochiku, K Kadowaki and J Giapintzakis, Nature 382, 51 (1996)
A G Loeser, Z-X Shen, D S Dessau, D S Marshall, C H Park, P Fournier and A Kapitulnik, Science 273, 325 (1996)
A V Puchkov, D N Basov and T Timusk, J. Phys.: Condens. Matter 8, 10049 (1996)
D D Osheroff, R C Richardson and D M Lee, Phys. Rev. Lett. 28, 885 (1972)
F Steglich, J Aarts, C D Bredl, W Lieke, D Meschede, W Franz and H Schäfer, Phys. Rev. Lett. 43, 1892 (1979)
D Jerome, A Mazaud, M Ribault and K Bechgaard, J. Physique Lett. (Paris) 41, 98 (1980)
D Jerome and H J Schultz, Adv. Phys. 31, 399 (1982)
H R Ott, H Rudigier, Z Fisk and J L Smith, Phys. Rev. Lett. 50, 1595 (1983)
G R Stewart, Z Fisk, J O Willis and J L Smith, Phys. Rev. Lett. 52, 679 (1984)
H Magaffre, P Wzietek, C Lenoir, D Jérome and P Batail, Europhys. Lett. 28, 205 (1994)
M B Maple, Physica C 341–348, 47 (2000)
M Dressel, N Kasper, K Petukhov, B Gorshunov, G Griiner, M Huth and H Adrian, Phys. Rev. Lett. 88, 182404 (2002)
E Snider, N Dasenbrock-Gammon, R McBride, M Debessai, H Vindana, K Vencatasamy, K V Lawler, A Salamat and R P Dias, Nature 586, 373 (2020)
T Timusk and B Statt, Rep. Prog. Phys. 62, 61 (1999)
M V Sadowskii, Usp. Fiz. Nauk. 171, 539 (2001)
S Doniach and M Inui, Phys. Rev. B 41, 6668 (1990)
S Dzhumanov and P K Khabibullaev, Izv. Akad. Nauk Uzb. SSR Ser. Fiz. Mat. Nauk 1, 47 (1990)
S Dzhumanov, Physica C 235–240, 2269 (1994)
S Dzhumanov and P K Khabibullaev, Pramana – J. Phys. 45, 385 (1995)
V J Emery and S A Kivelson, Nature 374, 434 (1995)
T Sasaki, N Yoneyama, A Matsuyama and N Kobayashi, Phys. Rev. B 65, 060505 (2002)
S Wirth, Y Prots, M Wedel, S Ernst, S Kirchner, Z Fisk, J D Thompson, F Steglich and Y Grin, J. Phys. Soc. Jpn 83, 061009 (2014)
J P Gaebler, J T Stewart, T E Drake, D S Jin, A Perali, P Pieri and G S Strinati, Nature Phys. 6, 569 (2010)
A P Drozdov, P P Kong, V S Minkov, S P Besedin, M A Kuzovnikov, S Mozaffari, L Balicas, F F Balakirev, D E Graf, V B Prakapenka, E Greenberg, D A Knyazev, M Tkacz and M I Eremets, Nature 569, 528 (2019)
D S Hikashima and T Matsuura, J. Phys. Soc. Jpn 59, 24 (1990)
B H Brandov, Int. J. Mod. Phys. B 8, 3859 (1994)
R Joynt and L Taillefer, Rev. Mod. Phys. 74, 235 (2002)
D R Tilley and J Tilley, Superfluidity and Superconductivity (Adam Hilger, Bristol, 1990)
N F Mott, Physica C 205, 191 (1993)
P Schiffer and D D Osheroff, Rev. Mod. Phys. 67, 491 (1995)
T Matsuzaki, M Ido, N Momono, R M Dipasupil, T Nagata, A Sakai and M Oda, J. Phys. Chem. Solids 62, 29 (2001)
D N Basov and T Timusk, Rev. Mod. Phys. 77, 721 (2005)
P A Lee, N Nagaosa and X-G Wen, Rev. Mod. Phys. 78, 17 (2006)
P Bozek, Nucl. Phys. A 657, 187 (1999), arXiv:nuclth/9902019
P W Anderson, Fiz. Nizk. Temp. 32, 381 (2006)
R Friedberg and T D Lee, Phys. Lett. A 138, 423 (1989)
T Tanamoto, K Kohno and H Fukuyama, J. Phys. Soc. Jpn. 61, 1886 (1992)
J R Schriffer and A P Kampf, J. Phys. Chem. Solids 56, 1673 (1995)
J Ranninger and J M Robin, Physica C 253, 279 (1995)
V B Geshkenbein, L B Ioffe and A I Larkin, Phys. Rev. B 55, 3173 (1997)
A S Alexandrov, Theory of Superconductivity: from weak to strong coupling (IoP Publishing, Bristol, 2003)
M Eschrig, Adv. Phys. 55, 47 (2006)
V Z Kresin and S A Wolf, Rev. Mod. Phys. 81, 481 (2009)
M R Norman, Physics 3, 86 (2010)
J Zaanen, arXiv:cond-mat/0103255, (2001) 7 pages
G Baskaran, E Tosatti and L Yu, Int. J. Mod. Phys. B 1, 555 (1988)
X Dai, Z-B Su and L Yu, Phys. Rev. B 56, 5583 (1997)
P Phillips, Rev. Mod. Phys. 82, 1719 (2010)
B K Chakraverty, A Avignon and D Feinberg, J. Less-Common Metals 150, 11 (1989)
J Lorenzana and L Yu, Mod. Phys. Lett. B 5, 1515 (1991)
M A Kastner, R J Birgeneau, G Shirane and Y Endoh, Rev. Mod. Phys. 70, 897 (1998)
S Dzhumanov, A Baratov and S Abboudy, Phys. Rev. B 54, 13121 (1996)
A Lanzara, P V Bogdanov, X J Zhou, S A Kellar, D L Feng, E D Lu, T Yoshida, H Eisaki, A Fujimori, K Kishio, J-I Shimoyama, T Moda, S Uchida, Z Hussain and Z-X Shen, Nature 412, 510 (2001)
K Sarkar, S Banerjee, S Mukerjee and T M Ramakrishnan, Ann. Phys. 365, 7 (2016)
S Dzhumanov, P J Baimatov, A A Baratov and N I Rahmatov, Physica C 235–240, 2339 (1994)
J L Tallon and J W Loram, Physica C 349, 53 (2001)
J E Sonier, J H Brewer, R F Kiefl, R I Miller, G D Morris, C E Stronach, J S Gardner, S R Dunsiger, D A Boon, W N Hardy, R Liang and R H Heffner, Science 292, 1692 (2001)
D van der Marel, H J A Molegraaf, J Zaanen, Z Nussinov, F Carbone, A Damascelli, H Eisaki, M Greven, P H Kes and M Li, Nature 425, 271 (2003)
A Shekhter, B J Ramshaw, R Liang, W N Hardy, D A Bonn, F F Balakirev, R D McDonald, J B Betts, S C Riggs and A Migliori, Nature 498, 75 (2013)
V J Emery, S A Kivelson and O Zachar, Phys. Rev. B 56, 6120 (1997)
L B Ioffe and A J Millis, Science 285, 1241 (1999)
F Rullier-Albenque, H Alloul and R Tourbot, Phys. Rev. Lett. 91, 047001 (2003)
K Gorny, O M Vyaselew, J A Martindale, V A Nandor, C H Pennington, P C Hammel, W L Hults, J L Smith, P L Kuhns, A P Reyes and W G Moulton, Phys. Rev. Lett. 82, 177 (1999)
K Fossheim, O M Nes, T Laegreid, C N W Darlington, D A O’Connor and C E Gough, Int. J. Mod. Phys. B 1, 1171 (1988)
S E Inderhees, M B Salamon, N Goldenfeld, J P Rice, B G Pazol, D M Ginsberg, J Z Liu and W Crabtree, Phys. Rev. Lett. 60, 1178 (1988)
S Dzhumanov, Int. J. Mod. Phys. B 12, 2151 (1998)
S Dzhumanov, Solid State Commun. 115, 155 (2000)
D M Eagles, Phys. Rev. 186, 456 (1969)
S Dzhumanov, E X Karimboev and Sh S Djumanov, Phys. Lett. A 380, 2173 (2016)
C M Varma, Phys. Rev. B 55, 14554 (1997)
J Schmalian, D Pines and B Stojkovic, Phys. Rev. B 60, 667 (1999)
C Di Castro, M Grilli, S Caprara and D Suppa, J. Phys. Chem. Solids 67, 160 (2006)
C M Varma, Nature 468, 184 (2010)
F Pistolesi and G S Strinati, Phys. Rev. B 49, 6356 (1994); Phys. Rev B 53, 15168 (1996)
V V Tolmachev, Phys. Lett. A 266, 400 (2000)
A J Leggett, in Modern Trends in the Theory of Condensed Matter (Springer, Berlin, 1980) pp. 13–27
P Nozieres and S Schmitt-Rink, J. Low. Temp. Phys. 59, 195 (1985)
W A B Evans and Y Imry, Nuovo Cimento B 63, 155 (1969)
P W Anderson, The Theory of Superconductivity in the High-\(T_c\)Cuprates (Princeton University Press, Princeton, 1997)
D Emin and M S Hillery, Phys. Rev. B 39, 6575 (1989)
G Verbist, F M Peeters and J T Devreese, Phys. Scripta T39, 66 (1991)
S Dzhumanov, P J Baimatov and A A Baratov and P K Khabibullaev, Physica C 254, 311 (1995)
J Zaanen, G A Sawatzky and J W Allen, Phys. Rev. Lett. 55, 418 (1985)
M Imada, A Fujimori and Y Tokura, Rev. Mod. Phys. 70, 1039 (1998)
A Damascelli, Z Hussain and Z-X Shen, Rev. Mod. Phys. 75, 473 (2003)
J Fink, N Nucker, M Alexander, H Romberg, M Knupfer, M Merkel, P Adelmann, R Claessen, G Monte, T Buslaps, S Harm, R Manzke and M S Skibowski, Physica C 185–189, 45 (1991)
Ch B Lushchik and A Ch Lushchik, Decay of Electronic Excitations with Defect Formation in Solids (Nauka, Moscow, 1989)
S Dzhumanov and P K Khabibullaev, Phys. Stat. Sol. B 152, 395 (1989)
Y Toyozawa, Physica B 116, 7 (1983)
K S Song and R T Williams, Self-Trapped Excitons (Springer, Berlin, 1996)
J P Lu and Q Si, Phys. Rev. B 42, 950 (1990)
Ch Kittel, Quantum Theory of Solids (Nauka, Moscow, 1967)
R C Baetzold, Phys. Rev. B 42, 56 (1990)
S Dzhumanov, P J Baimatov, Sh T Inoyatov, Sh S Djumanov and A G Gulyamov, Phys. Lett. A 383, 1330 (2019)
X X Bi and P C Eklund, Phys. Rev. Lett. 70, 2625 (1993)
Th Timusk and D B Tanner, in Physical Properties of High Temperature Superconductors I (Ed. DM Ginsberg, Mir, Moscow, 1990)
T H H Vuong, D C Tsui, V G Goldman, P H Hor and R L Meng, Solid State Commun. 63, 525 (1987)
S Uchida, Physica C 185–189, 28 (1991)
T Ekino, S Hashimoto, H Fujii, J Hori, F Nakamura and T Fujita, Physica C 357–360, 158 (2001)
D Mihailovic, T Mertelj and K A Müller, Phys. Rev. B 57, 6116 (1998)
T Takahashi, T Sato, T Yokoya, T Kamiyama, Y Naitoh, T Mochiki, K Yamada, Y Endoh and K Kadowaki, J. Phys. Chem. Solids 62, 41 (2001)
A Ino, T Mizokawa, K Kobayashi and A Fujimori, Phys. Rev. Lett. 81, 2124 (1998)
A Ino, C Kim, M Nakamura, T Yoshida, T Mizokawa, A Fujimori, Z-X Shen, T Kakeshita, H Eisaki and S Uchida, Phys. Rev. B 65, 094504 (2002)
S Sugai, Physica C 185–189, 76 (1991)
M Le Tacon, A Bosak, S M Souliou, G Dellea, T Loew, R Heid, K-P Bohnen, G Ghiringhelli, M Krisch and B Keimer, Nature Phys. 10, 52 (2014)
E M Forgan, E Blakburn, A T Holmes, A K R Briffa, J Chang, L Bouchenoire, S D Brown, L G Ruixing, D Bonn, W N Hardy, N B Christensen, M V Zimmermann, M Hücker and S M Hayden, Nature Commun. 6, 10064 (2015)
M Miao, D Ishikawa, R Heid, M LeTakon, G Fabbris, D Meyers, G D Gu, A Q R Baron and M P M Dean, Phys. Rev. X 8, 011008 (2018)
H Ding, M R Norman, T Yokoya, T Takeuchi, M Randeria, J C Campuzano, T Takahashi, T Mochiku and K Kadowaki, Phys. Rev. Lett. 78, 2628 (1997)
Y Kohsaka, C Taylor, P Wahl, A Schmidt, J Lee, K Fujita, J W Alledredge, K McElroy, J Lee, H Eisaki, S Uchida, D-H Lee and J C Davis, Nature 454, 1072 (2008)
S Dzhumanov, P J Baimatov, O K Ganiev, Z S Khudayberdiev and B V Turimov, J. Phys. Chem. Solids 73, 484 (2012)
D Mihailovic, V V Kabanov, K Zagar and J Demsar, Phys. Rev. B 60, R6995 (1999)
D LeBoeuf, N Doiron-Leyraud, J Levallois, R Daou, J-B Bonnemaison, N E Hussey, L Balicas, B J Ramshaw, R Liang, D A Bonn, W N Hardy, S Adachi, C Proust and L Taillefer, Nature 450, 533 (2007)
R Daou, O Cyr-Choiniere, F Laliberte, D LeBoeuf, N Doiron-Leyraud, J-Q Yan, J-S Zhou, J B Goodenough and L Taillefer, Phys. Rev. B 79, 180505 (2009)
I M Vishik, M Hashimoto, R-H He, W-S Lee, F Schmitt, D Lu, R G Moore, C Zhang, W Meevasana, T Sasagawa, S Uchida, K Fujita, S Ishida, M Ishikado, Y Yoshida, H Eisaki, Z Hussain, T P Devereaux and Z X Shen, PNAS 109, 18332 (2012)
C C Tsuei and J R Kirtley, Rev. Mod. Phys. 72, 969 (2000)
A G Sun, D A Gajewski, M B Maple and R C Dynes, Phys. Rev. Lett. 72, 2267 (1994)
P Chaudhari and S Y Lin, Phys. Rev. Lett. 72, 1084 (1994)
D R Harshman, W J Kossler, X Wan, A T Fiory, A J Greer, D R Noakes, C E Stronach, E Koster and J D Dow, Phys. Rev. B 69, 174505 (2004)
G Deutscher, Rev. Mod. Phys. 77, 109 (2005)
Q Li, Y N Tsay, M Suenaga, R A Klemm, G D Gu and N Koshizuka, Phys. Rev. Lett. 83, 4160 (1999)
K A Müller, J. Supercond. 17, 3 (2004)
L Pietronero, S Strässler and C Grimaldi, Phys. Rev. B 52, 10516 (1995)
M Tinkham, Introduction to Superconductivity (Atomizdat, Moscow, 1980)
Yu B Rumer and M Sh Rivkin, Thermodynamics, Statistical Physics and Kinetics (Nauka, Moscow, 1977)
Ø Fischer, M Kugler, I Maggio-Aprile, C Berthod and Ch Renner, Rev. Mod. Phys. 79, 353 (2007)
J K Ren, X B Zhu, H F Yu, Ye Tian, H F Yang, C Z Gu, N L Ren and S P Zhao, Sci. Rep. 2, 248 (2012)
M Oda, K Hoya, R Kubota, C Manabe, N Momono, T Nakano and M Ido, Physica C 281, 135 (1997)
B Leridon, P Monod, D Colson and A Forget, Europhys. Lett. 87, 17011 (2009)
J L Tallon, J W Loram, J R Cooper, C Panagopoulos and C Berhard, Phys. Rev. B 68, 180501 (2003)
K Ishida, K Yoshida, T Mito, Y Tokunaga, Y Kitaoka, K Asayama, Y Nakayama, J Shimoyama and K Kishio, Phys. Rev. B 58, R5960 (1998)
T Watanabe, T Fujii and A Matsuda, Phys. Rev. Lett. 84, 5848 (2000)
A Kaminski, S Rosenkranz, H M Fretwell, Z Z Li, H Raffy, M Randeria, M R Norman and J C Campuzano, Phys. Rev. L Lett. 90, 207003 (2003)
J W Radcliffe, N Athanassopoulou, J M Wade, J R Cooper, J L Tallon and J W Loram, Physica C 235–240, 1415 (1994)
T Adachi, T Noji and Y Koike, J. Phys. Chem. Solids 63, 1097 (2002)
J Mosqueira, A Diaz, A Pomar, O Cabeza, J A Veira, J Maza and F Vidal, Physica C 235–240, 1397 (1994)
S Uchida, Physica C 341–348, 823 (2000)
Y Koike and T Adachi, Physica C 481, 115 (2012)
A Ulug, B Ulug and R Yagbasan, Physica C 235–240, 879 (1994)
E Aharoni and G Koren, Physica C 235–240, 3339 (1994)
B P Stojkoviċ and D Pines, Phys. Rev. B 55, 8576 (1997)
S Dzhumanov, O K Ganiev and Sh S Djumanov, Physica B 440, 17 (2014)
I M Tsidilkovski, Electrons and Holes in Semiconductors (Nauka, Moscow, 1972)
M Houssa and M Ausloos, Physica C 265, 258 (1996)
P B Allen, Z Fisk and A Migliray, in Physical Properties of High Temperature Superconductors I (edited by D M Ginsberg, Mir, Moscow, 1990)
R V Vovk, N R Vovk, O V Shekhovtsov, I L Goulatis and A Chroneos, Supercond. Sci. Technol. 26, 085017 (2013)
A El Azrak, L A De Vaulchier, N Bontemps, C Thivet, M Guilloux-Viry, A Perrin, B Wuyts, M Maenhoudt and E Osquiguil, Physica C 235–240, 1431 (1994)
M Suzuki and T Murakami, Jpn. J. Appl. Phys. 26, L524 (1987)
A Matsuda, T Fujii and T Watanabe, Physica C 388–389, 207 (2003)
B W Hoogenboom, C Berthod, M Peter, Ø Fischer and A A Kordyuk, Phys. Rev. B 67, 224502 (2003)
J Nieminen, H Lin, R S Markiewicz and A Bansil, Phys. Rev. Lett. 102, 037001 (2009)
M Eschring and M R Norman, Phys. Rev. Lett. 85, 3261 (2000)
Z F Zasadzinski, L Coffey, P Romano and Z Yusof, Phys. Rev. B 68, 180504 (2003)
W Sacks, T Gren, D Roditchev and B Douçot, Phys. Rev. B 74, 174517 (2006)
S Dzhumanov, O K Ganiev and Sh S Djumanov, Physica B 427, 22 (2013)
K McElroy, D-H Lee, J E Hoffman, K M Lang, E W Hudson, H Eisaki, S Uchida, J Lee and JC Davis, Phys. Rev. Lett. 94, 197005 (2005)
A C Fang, L Capriotti, D J Scalapino, S A Kivelson, N Kaneko, M Greven and A Kapitulnik, Phys. Rev. Lett. 96, 017007 (2006)
Ch Renner, B Revaz, J-Y Genoud, K Kadowaki and Ø Fischer, Phys. Rev. Lett. 80, 149 (1998)
A Matsuda, S Sugita, T Fujii and T Watanabe, J. Phys. Chem. Solids 62, 65 (2001)
P Mallet, D Roditchev, W Sacks, D Defourneau and J Klein, Phys. Rev. B 54, 13324 (1996)
N Miyakawa, J F Zasadzinski, L Ozyuzer, P Guptasarma, D G Hinks, C Kendziora and K E Gray, Phys. Rev. Lett. 83, 1018 (1999)
S Dzhumanov, arXiv:1709:02110 (2017)
P C W Fung and W Y Kwok, J. Supercond. 4, 67 (1991)
J W Loram, K A Mirza and J R Cooper, IRC Res. Rev. 3, 77 (1998)
F-S Liu, W-F Liu, W-F Chen and K Peng, J. Phys.: Condens. Matter 13, 2817 (2001)
S Dzhumanov and E X Karimboev, Physica A 406, 176 (2014)
V Z Kresin, H Morawitz and S A Wolf, Mechanisms of Conventional and High\(T_c\)Superconductivity (Oxford University Press, New York–Oxford, 1993)
M Muroi and R Street, Physica C 246, 357 (1995)
A Junod, D Sanchez, J-Y Genoud, T Graf, G Triscone and J Muller, Physica C 185–189, 1399 (1991)
L D Landau and E M Lifshitz, Statistical Physics (Part I, Nauka, Moscow, 1976)
B D Dunlap, M V Nevitt, M Slaski, T E Klippert, Z Sungaila, A G McKale, D W Capone, R B Poeppel and B K Flandermeyer, Phys. Rev. B 35, 7210 (1987)
G-M Zhao, H Keller and K Conder, J. Phys.: Condens. Matter 13, R569 (2001)
A R Bishop, A Bussmann-Holder, O V Dolgov, A Furrer, H Kamimura, H Keller, R Khasanov, R K Kremer, D Manske, K A Müller and A Simon, J. Supercond. Nov. Magn. 20, 393 (2007)
J Appel, in Polarons (edited by Yu A Firsov, Nauka, Moscow, 1975)
G V M Williams, J L Tallon, J W Quilty, H J Trodahl and N E Flower, Phys. Rev. Lett. 80, 377 (1998)
D R Temprano, K Conder, A Furrer, H Mutka, V Trounov and K A Müller, Phys. Rev. B 66, 184506 (2002)
J L Tallon, R S Islam, J Storey, G V M Williams and J R Cooper, Phys. Rev. Lett. 94, 237002 (2005)
F Raffa, T Ohno, M Mali, J Roos, D Brinkmann, K Conder and M Eremin, Phys. Rev. Lett. 81, 5912 (1998)
A Lanzara, G-M Zhao, N L Saint, A Bianconi, K Conder, H Keller and K A Müller, J. Phys.: Condens. Matter 11, L541 (1999)
D R Temprano, J Mesot, S Janssen, K Conder, A Furrer, H Mutka and K A Müller, Phys. Rev. Lett. 84, 1990 (2000)
D R Temprano, J Mesot, S Janssen, K Conder, A Furrer, A Sokolov, V Trounov, S M Kazakov, J Karpinski and K A Müller, Eur. Phys. J. B 19, 5 (2001)
A Furrer, K Conder, P Häfliger and A Podlesnyak, Physica C 408–410, 773 (2004)
K Ichimura and K Nomura, J. Phys. Soc. Japan 75, 051012 (2006)
N L Wang, B P Clayman, H Mori and S Tanaka, Physica B 284–288, 513 (2000)
K Hannewald, V M Stojanovic, J M T Schellekens, P A Bobbert, G Kresse and J Hafner, Phys. Rev. B 69, 075211 (2004)
W Fan, arXiv:0904.4726
K D Meisel, H Vocks and P A Bobbert, Phys. Rev. B 71, 205206 (2005)
R L Greene, in Proceedings of the International Conference on Organic Superconductivity (Plenum Press, New York, pp. 7–13 1990)
S A Wolf and V Z Kresin, in Proceedings of the International Conference on Organic Superconductivity (Plenum Press, New York, pp. 31–38, 1990)
H Okamura, T Michizawa, T Nanba and T Ebihara, J. Phys. Soc. Jpn 73, 2045 (2004)
P Aynajian, E H da Silva Neto, B B Zhou, Sh Misra, R E Baumbach, Z Fisk, J Mydosh, J D Thompson, E D Bauer and A Yazdani, J. Phys. Soc. Jpn. 83, 061008 (2014)
A Gyenis, B E Feldman, M T Randeria, G A Peterson, E D Bauer, P Aynajian and A Yazdani, Nature Commun. 9, 549 (2018)
A J Leggett, Rev. Mod. Phys. 47, 331 (1975)
D Vollhardt and P Wölfle, The Superfluid Phases of Helium-3 (London, Taylor and Francis, 1990)
E R Dobbs, Helium Three (Oxford, Oxford University Press, 2000)
G P Meisner, A L Giorgi, A C Lawson, G R Stewart, J O Willis, M S Wire and J L Smith, Phys. Rev. Lett. 53, 1829 (1984)
P W Anderson and P Morel, Phys. Rev. 123, 1911 (1961)
R Balain and N R Werthamer, Phys. Rev. 131, 1553 (1963)
Y H Huang, Physics Procedia 67, 582 (2015)
D M Lee, Rev. Mod. Phys. 69, 645 (1997)
J R Schrieffer and M Tinkham, Rev. Mod. Phys. 71, S313 (1999)
M A Baranov, M Yu Kagan and Yu Kagan, JETP Lett. 64, 301 (1996)
A S Alexandrov and A M Bratkovsky, Phys. Rev. Lett. 105, 226408 (2010)
F London, Superfluids (Wiley New York, 1954)
L D Landau, J. Phys. (Moscow) 5, 71 (1941)
N N Bogoliubov, J. Phys. (Moscow) 11, 23 (1947)
M Luban, Phys. Rev. 128, 965 (1962)
P Dorre, H Hang and D B Tran Thoai, J. Low Temp. Phys. 35, 465 (1979)
S C Whitmore and W Zimmerman, Phys. Rev. Lett. 15, 389 (1965)
A W Steyert, R D Taylor and T A Kitchens, Phys. Rev. Lett. 15, 546 (1965)
R Hasting and J W Halley, Phys. Rev. B 12, 267 (1975)
I V Bogoyavlensky, L V Kamatsevich, G A Kozlow and A V Puchkov, Fiz. Nisk. Temp. 16, 139 (1990)
R A Cowley and A D B Woods, Can. J. Phys. 49, 177 (1971)
J G Valatin and D Butler, Nuovo Cimento 10, 37 (1958)
W A B Evans and C G Harris, J. Phys. Colloq. (Paris) C6 39, 237 (1978)
S T Beliaev, Sov. Phys. JETP 7, 289 (1958)
P Nozieres and D Saint James, J. Phys. (Paris) 43, 1133 (1982)
W A B Evans, Physica B 165–166, 513 (1990)
A Coniglio, F Mancini and M Maturi, Nuovo Cimento B 63, 227 (1969)
E A Pashitskii, S V Mashkevich and S I Vilchynskyy, Phys. Rev. Lett. 89, 075301 (2002)
M J Rice and Y R Wang, Phys. Rev. B 37, 5893 (1988)
J M Wheatley, T C Hsu and P W Anderson, Phys. Rev. B 37, 5897 (1988)
P J Baymatov, Ph.D. thesis (Department of Thermal Physics, Uzbek Academy of Sciences, 1995)
R Micnas, J Ranninger and S Robaszhkiewicz, Rev. Mod. Phys. 62, 113 (1990)
S Hüfner, M A Hossain, A Damascelli and G A Sawatzky, Rep. Prog. Phys. 71, 062501 (2008)
K Kawabata, S Tsukui, Y Shono, O Michikami, H Sasakura, K Yoshiara, Y Kokehi and T Yotsuya, Phys. Rev. B 58, 2458 (1998)
J E Gordon, S Prigge, S J Collocott and R Driver, Physica C 185–189, 1351 (1991)
J M Barbut, D Bourgault, N Schopohe, A Sulpice and R Tournier, Physica C 235–240, 2855 (1994)
Y Tanaka, A Iyo, S Itoh, K Tokiwa, T Nishio and T Yanagisawa, J. Phys. Soc. Jpn. 83, 074705 (2014)
M A Izbizky, M Nunez Regueiro, P Esquinazi and C Fainstein, Phys. Rev. B 38, 9220 (1988)
S Dzhumanov, P J Baimatov and P K Khabibullaev, Uzb. Zh. Phys. 6, 24 (1992)
S Dzhumanov, P J Baimatov and N I Rahmatov, (Abstract 2nd Liquid Matter Conf. Firenze, Italy, 1993)
C C Tsuei, J R Kirtley, C C Chi, L S Yu-Jahnes, A Cupta, T Shaw, J Z Sun and M B Ketchen, Phys. Rev. Lett. 73, 593 (1994)
J R Kirtley, C C Tsuei and K A Moler, Science 285, 1373 (1999)
N Momono and M Ido, Physica C 264, 311 (1996)
V N Naumov, G I Frolova, E B Amitin, V E Fedorov and P P Samoilov, Physica C 262, 143 (1996)
E M Lifshitz and L P Pitaevskii, Stat. Phys. (Part 2, Nauka, Moscow, 1978)
J Carini, L Drabeck and G Grüner, Mod. Phys. Lett. B 3, 5 (1989)
G Deutscher, Phys. Scr. T29, 9 (1989)
E B Eom, J Z Sun, J Z Lairson, S K Streiffer, A F Marshall, K Yamamoto, S M Anlage, J C Bravman and T H Geballe, Physica C 171, 354 (1990)
H C Yang, B D Yao and H E Horng, Supercond. Sci. Technol. 1, 160 (1988)
S Orbach-Werbig, A Golubov, S Hensen, G Muller and H Piel, Physica C 235–240, 1823 (1994)
P Bernstein, S Flament, C Dubuc, J Bok, X Q Zhang, J P Contour and F R Ladan, Physica C 235–240, 1839 (1994)
A Hassini, A Pomar, C Moreno, A Ruyter, N Roma, T Puig and X Obradors, Physica C 460–462, 1357 (2007)
N Kobayashi, H Iwasaki, S Terada, K Noto, A Tokiwa, M Kikuchi, Y Syono and Y Muto, Physica C 153–155, 1525 (1988)
A Umezawa, G W Crabtree, K G Vandervoort, U Welp, W K Kwok and J Z Liu, Physica C 162–164, 733 (1989)
A Schilling, R Jin, H R Ott and Th Wolf, Physica C 235–240, 2741 (1994)
S I Vedeneev, Usp. Fiz. Nauk 182, 669 (2012)
M B Salamon, in Physical Properties of High Temperature Superconductors I (Ed. D M Ginsberg, Mir, Moscow,1990)
K A Müller, Z. Phys. B. – Condensed Matter 80, 193 (1990)
H J Bornemann, D E Morris and H B Liu, Physica C 182, 132 (1991)
M Chiao, R W Hill, C Lupien, L Taillefer, P Lambert, R Gagnon and P Fournier, Phys. Rev. B 62, 3554 (2000)
Z A Xu, E Ahmed, Z W Zhu, J Q Shen and X Yao, Physica C 460–460, 833 (2007)
Y Wang, L Li and N P Ong, Phys. Rev. B 73, 024510 (2006)
G Bridoux, P Pedrazzini, F De la Cruz and G Nieva, Physica C 460–462, 841 (2007)
H Kitano, T Ohashi, A Maeda and I Tsukada, Physica C 460–462, 904 (2007)
H-H Wen, G M H Luo, H Yang, L Shan, C Ren, P Cheng, G Yan and L Fang, Phys. Rev. Lett. 103, 067002 (2009)
I Iguchi, T Yamaguchi and A Sugimoto, Nature 412, 420 (2001)
L Li, Y Wang, S Komiya, S Ono, Y Ando, G D Gu and N P Ong, Phys. Rev. B 81, 054510 (2010)
S Dzhumanov, Superlattices and Microstructures 21, 363 (1997)
M Yu Kagan and D V Efremov, Phys. Rev. B 65, 195103 (2002)
M Leroux, V Mishra, J P C Ruff, H Claus, M P Smylie, C Opagiste, P Rodiere, A Kayani, G D Gu, J M Tranquada, W-K Kwok, Z Islam and U Welp, PNAS 116, 10961 (2019)
J L Tholence, L Puech, A Sulpice, J J Capponi, B Souletie, C Chaillout, J J Prejean, M Alario-Franco, M Marezio, S deBrion, M Couach, O Monnereau, T Badeche, A M Ghorayeb, C Boulesteix, K Vad and B Keszei, Physica C 235–240, 1545 (1994)
F Steglich, U Ahlheim, A Böhm, C D Bredl, R Caspary, C Geibel, A Grauel, R Helfrich, R Köhler, M Lang, A Mehner, R Modler, C Schank, C Wassilew, G Weber, W Assmus, N Sato and T Komatsubara, Physica C 185–189, 379–384 (1991)
K Kanoda, K Akida, K Suzuki and T Takahashi, Phys. Rev. Lett. 65, 1271 (1990)
A I Sokolov, Supercond.: Phys. Chem. Tech. 5, 1794 (1992)
K Ichimura and K Nomura, J. Phys. Soc. Jpn. 75, 051012 (2006)
Y-K Luo, P F S Rosa, E D Bauer and J D Thompson, Phys. Rev. B 93, 201102 (2016)
Y Maeno, S Kittaka, T Nomura, S Yonezawa and K Ishida, J. Phys. Soc. Jpn. 81, 011009 (2012)
J Jang, D G Ferguson, V Vakaryuk, R Budakian, S B Chung, P M Goldbart and Y Maeno, Science 331, 186 (2011)
P Hakonen and O V Lounasmaa, Phys. Today 40(2), 70 (1987)
N Nagamura and R Ikeda, Phys. Rev. B 98, 094524 (2018)
Yu M Bunkov, A S Chen, D J Cousins and H Goodfrin, Phys. Rev. Lett. 85, 3456 (2000)
Y Wang and P E Sokol, Phys. Rev. Lett. 72, 1040 (1994)
E Timmerman, Contemp. Phys. 42, 1 (2001)
A Paris-Mandoki, J Shearring, F Mancarella, T M Fromhold, A Trombettoni and P Krüger, Sci. Rep. 7, Art. No. 9070 (2017)
J Wilks, The Properties of Liquid and Solid Helium (Claredon Press, Oxford, 1997)
R Feynman, Statistical Mechanics (Mir, Moscow, 1978)
N Wada, A Inoue, H Yano and K Torii, Phys. Rev. B 52, 1167 (1995)
M K Zalalutdinov, V Kovacik, M Fukuda, T Igarashi and M Kubota, Czech. J. Phys. 46, Suppl. 39 (1996)
S Tewaru, S Ds Sarma, C Nayak, C Zhang and P Zoller, Phys. Rev. Lett. 98, 010506 (2007)
M M Sharma, P Sharma, N K Karn and V P S Awana, Supercond. Sci. Technol. 35, 083003 (2022)
J Alicea, Rep. Prog. Phys. 75, 076501 (2012)
S Lupi, M Capizzi, P Calvani, B Ruzicka, P Maselli, P Dore and A Paolone, Phys. Rev. B 57, 1248 (1998)
K A Moler, J R Kirtley, D G Hinks, T W Li and M Xu, Science 279, 1193 (1998)
J C Wynn, D A Bonn, B W Gardner, Y-J Lin, R Liang, W N Hardy, J R Kirtley and K A Moler, Phys. Rev. Lett. 87, 197002 (2001)
A L Solovjov, L V Omelchenko, V B Stepanov, R V Vovk, H-U Habermeier, H Lochmajer, P Przyslupski and K Rogacki, Phys. Rev. B 94, 224505 (2016)
J E Hirsch and F Marsiglio, Phys. Rev. B 103, 134505 (2021)
F M Araujo-Moreira, P N Lisboa-Filho, A J C Lanfredi, W A Ortiz, S M Zanetti, E R Leite, A W Mombr, L Ghivelder, Y G Zhao and V Venkatesan, Physica C 341, 413 (2000)
D D Gulamova, A V Karimov, J G Chigvinadze, S M Ashimov, O V Magradze, S Kh Bobokulov, Zh Sh Turdiev and Kh N Bakhronov, Zh. Techn. Fiz. 89, 583 (2019)
D D Gulamova, private communication (2022)
Acknowledgements
The author would like to thank E M Ibragimova, A Rahimov, A L Solovjov, P J Baimatov, M J Ermamatov, U T Kurbanov, Z S Khudayberdiev, E X Karimbaev and Z A Narzikulov for useful discussions. This work was supported by the Foundation of the Fundamental Research, Grant No. OT-\(\Phi \)2-15 and F-FA-2021-433.
Author information
Authors and Affiliations
Corresponding author
Appendices
Appendices
Appendix A: Boltzmann transport equations for Fermi components of Cooper pairs and bosonic Cooper pairs
The Boltzmann transport equation for the excited Fermi components of Cooper pairs in the relaxation time approximation can be written as
where \(f^0_C(k)\) is the equilibrium Fermi distribution function, \(\tau _\textrm{BCS}(k)\) is the relaxation time of the Fermi components of Cooper pairs in the BCS-like pseudogap regime, \(\vec {F}\) is a force acting on a charge carrier in the crystal.
We consider the conductivity of hole carriers in the presence of the electric field applied in the x-direction. Then we can write eq. (A1) as
where \(E(k)=\sqrt{\xi ^2(k)+\Delta ^2_F}\), \(\xi (k)=\varepsilon (k)-\varepsilon _F\), \(\varepsilon (k)=\hbar ^2(k^2_x+k^2_y+k^2_z)/2m_p\), \(V_x=\frac{1}{\hbar }\frac{\partial E(k)}{\partial k_x}=v_x\frac{\xi }{E}\), \(v_x=\hbar k_x/m_p\).
The number of the Fermi components of Cooper pairs is determined from the relation
Then the density of these Fermi quasiparticles is defined as
Using eqs (A.2) and (A.4) the current density in the x-direction can be defined as
where \(\xi \) and E are even functions of k, while \(v_xf^0_C(k)\) is an odd function of \(v_x\). Since integration with respect to \(dk_x\) ranges from \(-\infty \) to \(+\infty \), the first term in eq. (A.5) becomes zero, and only the second term remains, resulting in (for \(F_x=+eE_x\))
Similarly, the current density of bosonic Cooper pairs in the x-direction is given by (for \(F_x=+2eE_x\))
Appendix B: Possible analytical solutions of the integral equations in the theory of a 3D Bose superfluid for \(T=0\)
For the model potential (122), \(\Delta _B(\vec {k})\) will be approximated as
Then eqs (116) and (118) at \(T=0\) are reduced to the following equations:
and
where
and \(\rho _{B1}=\frac{1}{\Omega }\sum ^{k_A}_{k=0}n_B(\vec {k})\), \(\rho _{B2}=\frac{1}{\Omega }\sum ^{k_R}_{k=k_A}n_B(\vec {k})\), \(n_B(\vec {k})=[\exp (E_B(\vec {k})/k_BT)-1]^{-1}\), \(\xi _{BA}=\varepsilon (k_A)\), \(\xi _{BR}=\varepsilon (k_R)\).
For 3D Bose systems, \(D_B={m_B}^{3/2}/\sqrt{2}\pi ^2\hbar ^3\). From eq. (B.2), we obtain
At \(\xi _{BA}>>\tilde{\mu }_B\), \(\Delta _{B2}\), we obtain from eq. (B.5),
and
for 3D and 2D Bose systems, respectively.
We can assume that almost all Bose particles have energies smaller than \(\xi _{BA}\) and \(\rho _B\simeq \rho _{B1}\). Using eq. (117) the expression for \(\rho _B\) can be written as
At \(\rho _{B2}<<\rho _{B1}\), the result of eq. (B.3) allows us to determine the renormalized chemical potential as \(\tilde{\mu }_B=-\mu _B+2\rho _B(V_{BR}-V_{BA})\). While eq. (B.4) determines the coherence parameter \(\Delta _B=\Delta _{B1}\). From eq. (B.6), it follows that the model interboson interaction potential defined by eq. (122) reduces to the following simple BCS-like potential:
For a 3D Bose system, we obtain from eqs (B.4) and (B.9),
and
Equation (B.11) reduces to the relation (123) and then the substitution of eq. (123) into eq. (B.12) gives the relation (124). Further, \(2\rho _B/D_B=2.612\sqrt{\pi }(k_BT_\textrm{BEC})^{3/2}\) [228] and eq. (125) follows from eq. (B.12). For \(E_B(0)=0\), eqs (119)–(121) can now be written as
Replacing the summation in eqs (B.14) and (B.15) by an integration and taking into account the approximation (B.10), we obtain
Equations (127) and (128) follow accordingly from eqs (B.16) and (B.17). In the case of 2D Bose systems, \(D_B=m_B/2\pi \hbar ^2\) and the multiplier \(\sqrt{\varepsilon }\) under the integrals in eqs (B.16) and (B.17) will be absent.
At \(\gamma _B<\gamma ^*_B\), evaluating the integrals in eq. (131), we have
In order to simplify eq. (B.18) further, we can expand the brackets \((\xi _{BA}+2\Delta _B)^{5/2}\), \((\xi _{BA}+2\Delta _B)^{3/2}\) and \((\xi _{BA}+2\Delta _B)^{1/2}\) in this equation in powers of \(2\Delta _B/\xi _{BA}\) as
Substituting eqs (B.19), (B.20) and (B.21) into eq. (B.18), we find
At \(\Delta _B/\xi _{BA}<<1\), we have
Appendix C: Possible analytical solutions of the integral equations in the theory of a 3D Bose superfluid for the temperature range \(0<T\le T_c\)
Using the model potential (122), we can write eqs (116) and (117) as
According to eq. (B.12) the first integral in eq. (C.1) at \(\tilde{\mu }_B=\Delta _B\) is equal to \(2\tilde{\mu }_B\sqrt{2\tilde{\mu }_B}/3\). From eq. (B.11), it follows that the first integral in eq. (C.2) at \(\tilde{\mu }_B=\Delta _B\) is equal to \(2[\sqrt{\xi _{BA}+2\tilde{\mu }_B}-\sqrt{2\tilde{\mu }_B}]\). The main contributions to the latter integrals in eqs (C.1) and (C.2) come from small values of \(\varepsilon \), so that for \(T<<T_c\) and \(\tilde{\mu }_B=\Delta _B\) the latter integrals in eqs (C.1) and (C.2) can be evaluated approximately as
At \(\tilde{\mu }_B=\Delta _B\), according to eqs (B.13) and (B.14), the term \(2\rho _{B0}/D_B\) should be present in eq. (C.1), while the term \(2\rho _{B0}/\tilde{\mu }_BD_B\) would be present in eq. (C.2). Therefore, at \(T<T_c^*<<T_c\), eqs (C.1) and (C.2) can be written as
from which we obtain eqs (134) and (135).
The first integrals in eqs (C.1) and (C.2) at \(\Delta _g\ne 0\) (or \(\rho _{B0}=0\)) and \(\tilde{\mu }_B>>\Delta _B\) can be evaluated approximately using the Taylor expansion
Performing the integration and using also the expansion
we obtain the following results for the first integrals in equations (C.1) and (C.2):
The latter integrals in eqs (C.1) and (C.2) can be evaluated near \(T_c\) making the substitution \(t=\sqrt{(\varepsilon /\tilde{\mu }_B)^2+2\varepsilon /\tilde{\mu }_B}\), \(a^2_1t^2+a^2_2=[(\varepsilon +\tilde{\mu }_B)^2-\Delta ^2_B]/(k_BT)^2\) [228], where \(a_1=\tilde{\mu }_B/k_BT\), \(a_2=\sqrt{\tilde{\mu }_B^2-\Delta ^2_B}/k_BT\). The second integral in eq. (C.1) can be written in the form
where \(a_1<<1\), \(a_2{<<}1\), and \(\Delta _B{<<}\tilde{\mu }_B\) near \(T_c\).
This integral can be evaluated using the method presented in [212] and the final result has the following form [228]
The second integral \(I'_2\) in eq. (C.2) is also evaluated in the same manner as follows:
By expanding the expressions \(\sqrt{1-\Delta ^2_B/4\tilde{\mu }_B^2}\) and \(\sqrt{1/(1-\Delta ^2_B/4\tilde{\mu }_B^2)}\) in powers of \(\Delta _B/4\tilde{\mu }_B\) and replacing \(1.46\sqrt{2}\) by 2, we obtain from eqs (C.1), (C.2), (C.9), (C.11) and (C.12) (with an accuracy to \(\sim \tilde{\mu }_B(T)\))
For \(k_BT/\xi _{BA}\sim 1/2\pi \), the relation (138) follows from (C.13). After some transformations in eq. (C.14), we have
Equation (137) follows from eq. (C.15). In order to determine the temperature dependencies of \(\tilde{\mu }_B\) and \(\Delta _B\) near \(T_c\), eqs (137) and (138) can be written as
The quantities \(\tilde{\mu }_B(T)\) and \(\Delta _B(T)\) near \(T_c\) can be determined by eliminating \(\Delta ^2_B/8\tilde{\mu }^2_B\) from these equations. Making after that some algebraic transformations, we obtain
Combining now these equations, we have
Now this equation has the solution
Next, taking into account that near \(T_c\),
we obtain
After combining this equation with eq. (138) follows approximately eq. (141) at \(k_BT_c/\tilde{\mu }_B(T_c)>>1\). From eqs (C.17) and (141), we obtain eq. (142). Assuming that \(\tilde{\mu _B}(T)/k_BT^*_c<<1\), we examine the behaviors of \(\tilde{\mu _B}(T)\) (or \(\Delta _B(T)\)) and \(n_{B0}(T)\) near the characteristic temperature \(T^*_c<T_c\). Replacing the summation in eqs (B.13)–(B.15) by an integration and using eqs (C.11) and (C.12) at \(\Delta _g=0\), we obtain following equations for determining \(\tilde{\mu _B}(T)\) and \(\rho _{B0}(T)\) near \(T^*_c\):
At \(T=T_c^*\) and \(\rho _{B0}=0\) (which corresponds to a complete depletion of the single particle condensate), eqs (C.19) and (C.20) at \(\tilde{\mu }_B/k_BT_c^*<<1\) can be written as
and
At \(T \lesssim T_c^*\), eqs (C.19) and (C.20) become
and
Eliminating \(\rho _{B0}(T)\) from these equations (i.e., after substituting \(\rho _{B0}(T)\) from eq. (C.24) into eq. (C.23)) and making some algebraic transformations, we obtain the equation for \(\tilde{\mu }_B(T)\), which is similar to eq. (C.18). The solution of this equation near \(T^*_c\) leads to a simple expression (143). Then, substituting \(\tilde{\mu }_B(T)/\tilde{\mu }_B(T^*_c)\) from eq. (143) into eq. (C.23), we obtain the relation (144).
Appendix D: Calculation of the superfluid parameters of a 2D Bose-liquid for the temperature range \(0< T \le T_c\)
We now calculate the superfluid parameters of a 2D Bose-liquid. For a 2D interacting Bose system, eq. (116) after replacing the sum by the integral and making the substitution \(y=\sqrt{(\varepsilon +\tilde{\mu }_B)^2-\Delta _B^2}/2k_BT\) takes the following form:
where \(y_1=\Delta _{g}/2k_BT\), \(y_2=\sqrt{(\xi _{BA}+\tilde{\mu }_B)^2-\Delta _B^2}/2k_BT\), \(\Delta _B^*=\Delta _B/2k_BT\). In order to evaluate the integral in eq. (D.1) in the intervals \(y_1<y<1\) and \(1<y<y_2\), one can take accordingly \(\coth y\approx 1/y\) and \(\approx 1\). Then, after performing the integration in eq. (D.1), we obtain
It is clear that at \(T{<<}T_c\), \(\Delta ^*_B>>1\), \(y_2>>\Delta _B^*\) and \(\Delta _B^*>>y_1\). Taking into account that \(\ln y_1\) is negligible, we can write eq. (D.2) in the form
This expression after some algebraic transformations reduces to eq. (156). At temperatures close to \(T_c\), \(\Delta _B^*{<<}1\). We then obtain from eq. (D.2) (with an accuracy to \(\sim (\Delta _B^*)^2\))
Assuming that \(y_2^{\Delta _B^*}\simeq 1\) and \(\Delta _B^*/\gamma _B<<1\), we obtain from eq. (D.4)
which reduces to
One can assume that \(\Delta _g(T)\) varies near \(T_c\) as \(\sim \alpha _0(2k_BT)^q\), where \(\alpha _0\) is determined at \(T=T_c\) from the condition \(\Delta _B(T_c)=0\)), q is variable parameter. Thus, in a 2D Bose superfluid \(\Delta _B(T)\) and \(\tilde{\mu }_B(T)\) can be determined accordingly from eqs (157) and (158).
For 2D Bose systems, the multiplier \(\sqrt{\varepsilon }\) under the integral in eq. (171) will be absent. In order to estimate such an integral at \(\Delta _g<2k_BT\), we make the substitution \(x=E_B(\varepsilon )/2k_BT\). Then, taking into account that the function \(\sinh x\) is close to x for \(x<1\) and this function close to \((1/2\exp (x))\) for \(x>1\), we obtain the following expression for the specific heat of a 2D Bose superfluid:
At low temperatures, \(\Delta ^*_B>>1\), so that the expression \(\sqrt{x^2+(\Delta ^*_B)^2}\) in the integrands can be replaced by \(\Delta ^*_B\). Then, calculating the integrals in eq. (D.6) with this approximation, we obtain eq. (175).
Appendix E: Calculation of the characteristic temperature \(T_0^*\) in a 2D Bose-liquid
In the case of a 2D Bose-liquid, the expressions for \(\tilde{\varepsilon }_B(k)\) and \(\rho _B\) presented in §7.1 and Appendix B after replacing the summation by an integration can be written as
and
Here
In eq. (168) the function \(J_0(kRx)\) can be expanded in a Taylor series around \(kR=0\) as
From eq. (168), we then obtain
Here \(V_B(0)=2\pi WR^2I_1\), \(k_R=4I_1/I_3R^2\) and \(I_n=\int _0^\infty dxx^n\Phi (x)\).
The subsequent analytical calculations are similar to the case of a 3D Bose gas [212]. Therefore, we present the following final results for \(\varepsilon _B(k)\), \(m_p^*\) and \(\rho _B\):
Using these equations, we obtain the same relation as (165). Thus, the characteristic temperature \(T_0\) is now replaced by \(T_0^*=2\pi \hbar ^2\rho _B/m_B^*\).
Rights and permissions
About this article
Cite this article
Dzhumanov, S. Microscopic theory of novel pseudogap phenomena and Bose-liquid superconductivity and superfluidity in high-\(T_c\) cuprates and other systems. Pramana - J Phys 97, 205 (2023). https://doi.org/10.1007/s12043-023-02654-6
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/s12043-023-02654-6
Keywords
- High-\(T_c\) cuprates and other unconventional
- superfluids
- pseudogap phenomena
- bosonic Cooper pairs
- Bose-liquid superconductivity and superfluidity
- room-temperature superconductivity