Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

An optimal PID controller for a biped robot walking on flat terrain using MCIWO algorithms

  • Research Paper
  • Published:
Evolutionary Intelligence Aims and scope Submit manuscript

Abstract

The design of appropriate controller plays an important role in achieving the dynamically balanced gaits of the biped robot. The present paper deals with the tuning of gains (Kp, Kd and Ki) of the proposed PID controller using two non-traditional global optimization algorithms, namely Particle Swarm Optimization (PSO) and a variant of Invasive Weed Optimization (IWO) called Modified Chaotic Invasive Weed Optimization (MCIWO) algorithms, which is newly proposed by the authors. The effectiveness of the newly proposed MCIWO algorithm has been verified with the help of benchmark functions by conducting the normality test, parametric and non-parametric tests. Further, the developed MCIWO algorithm is used to develop the optimal PID controller for the biped robot. Once the PID controllers are optimized, the performance of the controllers in terms of various performance measures of the biped robot are compared. Finally, the gait generated using the optimal PID controllers are tested on a real biped robot.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Juricic D, Vukobratovic M (1972) Mathematical modelling of biped walking systems. ASME Publications. (72-WA/BHF13)

  2. Sano A, Furusho J (1990) Realization of natural dynamic walking using the angular momentum information. In: IEEE international conference on robotics and automation, pp 1476–1481

  3. Vundavilli PR, Sahu SK, Pratihar DK (2007) Dynamically balanced ascending and descending gaits of a two-legged robot. Int J Humanoid Rob 4(4):717–751

    Article  Google Scholar 

  4. Hernández SC, Rodriguez LE, Soto R, Gordillo JL (2012) Kinematics and dynamics of a new 16 DOF humanoid biped robot with active toe joint. Int J Adv Robot Syst 9:1–12

    Article  Google Scholar 

  5. Konstantin K, Gunter H (2003) Control algorithm for stable walking of biped robots. In: 6th international conference on climbing and walking robots, pp 119–126

  6. Kanjanapan S, Andrew F Jr (2011) The development of nonlinear model reference PID controller for a bipedal robot. J Comput Sci Inform Electr Eng 3(1):1–12

    Google Scholar 

  7. Rakesh G, Akshay TP (2015) Modeling and control of joint angles of a biped robot leg using PID controllers. In: IEEE international conference on engineering and technology, Coimbatore, 20 Mar 2015

  8. Ravi KM, Vundavilli PR (2015) Design of PID controllers for 4-DOF planar and spatial manipulators. In: IEEE conference on robotics, automation, control and embedded systems, Chennai, pp 1–6

  9. Helon VHA, Leandro SC (2012) Tuning of PID controller based on a multi-objective genetic algorithm applied to a robotic manipulator. Expert Syst Appl 39(10):8968–8974

    Article  Google Scholar 

  10. Khoury GM, Saaad M, Kanaan HY, Asmar C (2004) Fuzzy PID control of a five DOF robot arm. J Intell Rob Syst 40(3):299–320

    Article  Google Scholar 

  11. Hassan BK (2002) The SOF-PID controller for the control of a MIMO robot arm. IEEE Trans Fuzzy Syst 10(4):523–532

    Article  MathSciNet  Google Scholar 

  12. Patrizio T (1991) Adaptive PD controller for ROBOT manipulators. IEEE Trans Robot Autom 7(4):565–570

    Article  Google Scholar 

  13. Visioli A (2001) Tuning of PID controllers with fuzzy logic. IEEE Proc Control Theo Appl 148(1):1–8

    Article  MathSciNet  Google Scholar 

  14. Kwok DP, Sheng F (1994) Genetic algorithm and simulated annealing for optimal robot arm PID control. In: IEEE conference on evolutionary computation, Orlando, pp 707–713

  15. Venu KK, Ravi KJ, Sake P (2009) Evolutionary soft computing tools based tuning of PID controller for EMA-AFC. In: IEEE TENCON, Singapore

  16. Geetha M, Manikandan P, Jovitha J (2014) Soft computing techniques based optimal tuning of virtual feedback PID controller for chemical tank reactor. In: IEEE congress on evolutionary computation, Beijing, 6–11 July 2014

    Book  Google Scholar 

  17. Ibrahim HEA, Hassan FN, Shomer AO (2013) Optimal PID control of a brushless DC motor using PSO and BF techniques. Ain Shams Eng J 5(2):391–398

    Article  Google Scholar 

  18. Mandava RK, Manas KS, Vundavilli PR (2015) Optimization of PID controller parameters for 3-DOF planar manipulator using GA and PSO. In: Bennett A (ed) New developments in expert systems research, computer science, technology and applications. Nova. Science Publishers, pp 67–88

  19. Zwe -LG (2004) A particle swarm optimization approach for optimum design of PID controller in AVR system. IEEE Trans Energy Convers 19(2):384–391

    Article  Google Scholar 

  20. Nagaraj B, Vijayakumar P (2012) Tuning of a PID controller using soft computing methodologies applied to moisture control in paper machine. Intell Autom Soft Comput 18(4):399–411

    Article  Google Scholar 

  21. Mahmud IS, Lee FT, Moey LK (2011) Tuning of PID controller using particle swarm optimization. In: Proceeding of the international conference on advanced science, engineering and information technology, Malaysia, 14–15 Jan 2011, pp 458–461

    Google Scholar 

  22. Robert C, Christian F, Ryan P, Gary G, Shawki A, Peter J (2014) Advancing genetic algorithm approaches to field programmable gate array placement with enhanced recombination operators. Evol Intel 7:183–200. https://doi.org/10.1007/s12065-014-0114-6

    Article  Google Scholar 

  23. Yih-Chun C, Tom H, Pei-Yun T, Martin M (2016) Population based ant colony optimization for reconstructing ECG signals. Evol Intel 9:55–66. https://doi.org/10.1007/s12065-016-0139-0

    Article  Google Scholar 

  24. Vyshnavi N, Pritee P, Tusar Kanti M (2018) Velocity adaptation based PSO for localization in wireless sensor networks. Evol Intel. https://doi.org/10.1007/s12065-018-0170-4

    Article  Google Scholar 

  25. Raghuraman S, Subramani C, Subhransu SD (2017) A hybrid stochastic fractal search and local unimodal sampling based multistage PDF plus (1 + PI) controller for automatic generation control of power systems. J Franklin Inst 354:4762–4783

    Article  MathSciNet  MATH  Google Scholar 

  26. Raghuraman S, Subramani C, Subhransu SD (2018) A modified whale optimization algorithm-based adaptive fuzzy logic PID controller for load frequency control of autonomous power generation systems. Automatika 58(4):410–421. https://doi.org/10.1080/00051144.2018.1465688

    Article  Google Scholar 

  27. Ibtissem C, Noureddine L, Pierre B (2012) Tuning PID controller using multi-objective ant colony optimization. Appl Comput Intell Soft Comput 2012:1–8. https://doi.org/10.1155/2012/536326

    Article  Google Scholar 

  28. Navid R, Mohsen K (2015) A new design for PID controller by considering the operating points changes in hydro-turbine connected to the equivalent network by using invasive weed optimization (IWO) algorithm. Int J Inform Secur Syst Manag 4(2):468–475

    Google Scholar 

  29. Yan L, Feng Y, Jun O, Haijing Z (2011) Yagi-Uda antenna optimization based on invasive weed optimization method. Electromagnetics 31(8):571–577

    Article  Google Scholar 

  30. Karimkashi S, Kishk AA (2010) Invasive weed optimization and its features in electromagnetics. IEEE Transist Antennas Propag 58(4):1269–1278

    Article  Google Scholar 

  31. Abedinia O, Foroud AA, Amjady N, Shayanfar HA (2012) Modified invasive weed optimization based on fuzzy PSS in multi-machine power system. In: International conference on artificial intelligence, Las Vegas, pp 73–79

    Google Scholar 

  32. Mandava RK, Vundavilli PR (2018) Whole body motion generation of 18-DOF biped robot on flat surface during SSP & DSP. Int J Model Identif Control 29(3):266–277

    Article  Google Scholar 

  33. Mehrabian AR, Lucas C (2006) A novel numerical optimization algorithm inspired from weed colonization. Ecol Inform 1(4):355–366

    Article  Google Scholar 

  34. Ghasemi M, Ghavidel S, Aghaei J, Gitizadeh M, Falah H (2014) Application of chaos-based chaotic invasive weed optimization techniques for environmental OPF problems in the power system. Elsevier Chaos Solitons Fract 69:271–284

    Article  MATH  Google Scholar 

  35. Basak A, Pal S, Das S, Abraham A (2010) A modified invasive weed optimization algorithm for time-modulated linear antenna array synthesis. IEEE congress on evolutionary computation, Barcelona, pp 1–10, 18–23 July

  36. Roy GG, Das S, Chakraborty P, Suganthan PN (2011) Design of non-uniform circular antenna arrays using a modified invasive weed optimization algorithm. IEEE Trans Antennas Propag 59(1):110–118

    Article  Google Scholar 

  37. Seyedali M, Siti ZMH (2010) A new hybrid PSOGSA algorithm for function optimization. In: International conference on computer and information application (ICCIA 2010), Tianjin, pp 374–377

  38. Naidu YR, Ojha AK (2015) A hybrid version of invasive weed optimization with quadratic approximation. Soft Comput 19(12):3581–3598

    Article  Google Scholar 

  39. Derrac J, Garcia S, Molina D, Herrera F (2011) A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol Comput 1:3–18

    Article  Google Scholar 

  40. Shih CL (1999) Ascending and descending stairs for a biped robot. IEEE Trans Syst Man Cybern Part A Syst Hum 29:255–268

    Article  Google Scholar 

  41. Huang Q, Yokoi K, Kajita S, Kaneko K, Arai H, Koyachi N, Tanie K (2001) Planning walking patterns for a biped robot. IEEE Trans Robot Autom 17:280–289

    Article  Google Scholar 

  42. Chiang MH, Chiang FR (2013) Anthropomorphic design of the human-like walking robot. J Bionic Eng 10:186–193

    Article  Google Scholar 

  43. Vundavilli PR, Pratihar DK (2011) Balanced gait generations of a two-legged robot on sloping surface. Sadhana Springer 36(4):525–550

    Article  Google Scholar 

  44. Peiman NM, Ahmad B (2007) Mathematical simulation of a seven link biped robot on various surfaces and ZMP considerations. Appl Math Model 31:18–37

    Article  MATH  Google Scholar 

  45. Mohammadreza R, Rene VM (2017) A seven link biped robot walking pattern generation on various surfaces. WSEAS Trans Syst 16:299–312

    Google Scholar 

  46. Ahmad B, Behnam MF, Peiman NM (2010) Mathematical modelling and simulation of combined trajectory paths of a seven link biped robot climbing and walking robots. Intechopen

  47. Safa B, Elyes M, Nahla K, Mongi B, Safya B (2015) Trajectory generation using predictive PID control for stable walking humanoid robot. Procedia Comput Sci 73:86–93

    Article  Google Scholar 

  48. Juan JAJ, David H-P, Humberto MB (2013) A simple feedback controller to reduce angular momentum in ZMP-based gaits. Int J Adv Rob Syst 10:1–7

    Article  Google Scholar 

  49. Behnam A, Aghil YK (2013) ZMP trajectory control of a humanoid robot using different controllers based on an offline trajectory generation. In: Proceeding of the 2013 RSIIISM international conference on robotics and mechatronics, Tehran

    Google Scholar 

  50. Shuuji K, Mitsuharu M, Kanako M, Shinichiro N, Kensuke H, Kenji K, Fumio K, Kazuhito Y (2010) Biped walking stabilization based on linear inverted pendulum tracking. In: IEEE/RSJ international conference on intelligent robots and systems, Taipei

    Google Scholar 

  51. Sangbum P, Youngjoon H, Hernsoo H (2009) Balance control of a biped robot using camera image of reference object. Int J Control Autom Syst 7(1):75–84

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ravi Kumar Mandava.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mandava, R.K., Vundavilli, P.R. An optimal PID controller for a biped robot walking on flat terrain using MCIWO algorithms. Evol. Intel. 12, 33–48 (2019). https://doi.org/10.1007/s12065-018-0184-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12065-018-0184-y

Keywords