Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Antagonistic and Biocontrol Potential of Trichoderma asperellum ZJSX5003 Against the Maize Stalk Rot Pathogen Fusarium graminearum

  • Original Article
  • Published:
Indian Journal of Microbiology Aims and scope Submit manuscript

Abstract

The efficacy of seven strains of Trichoderma asperellum collected from the fields in Southern China was assessed against Fusarium graminearum (FG) the causal agent of corn stalk rot of maize were in vitro for their antagonistic properties followed by statistical model of principal compound analysis to identify the beneficial antagonist T. asperellum strain. The key factors of antagonist activity were attributed to a total of 13 factors including cell wall degrading enzymes (chitnase, protease and β-glucanases), secondary metabolites and peptaibols and these were analyzed from eight strains of Trichoderma. A linear regression model demonstrated that interaction of enzymes and secondary metabolites of T. asperellum strain ZJSX5003 enhanced the antagonist activity against FG. Further, this strain displayed a disease reduction of 71 % in maize plants inoculated with FG compared to negative control. Pointing out that the T. asperellum strain ZJSX5003 is a potential source for the development of a biocontrol agent against corn stalk rot.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Marasas WFO, Nelson PE, Toussoun TA (1984) Toxigenic Fusarium species: identity and mycotoxicology. The Pennsylvania State University Press, University Park

    Google Scholar 

  2. Harman GE, Howell CR, Viterbo A, Chet I, Lorito M (2004) Trichoderma species—opportunistic, avirulent plant symbionts. Nat Rev Microbiol 2:43–56. doi:10.1038/nrmicro797

    Article  CAS  PubMed  Google Scholar 

  3. Lorito M, Farkas V, Rebuffat S, Bodo B, Kubicek CP (1996) Cell wall synthesis is a major target of mycoparasitic antagonism by Trichoderma harzianum. J Bacteriol 178:6382–6385

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Harman GE, Herrera-Estrella AH, Horwitz BA, Lorito M (2012) Special issue: Trichoderma—from basic biology to biotechnology. Microbiology 158:1–2. doi:10.1099/mic.0.056424-0

    Article  CAS  PubMed  Google Scholar 

  5. Schmoll M, Schuster A (2010) Biology and biotechnology of Trichoderma. Appl Microbiol Biotechnol 87:787–799. doi:10.1007/s00253-010-2632-1

    Article  PubMed  PubMed Central  Google Scholar 

  6. Shoresh M, Mastouri F, Harman G (2010) Induced systemic resistance and plant responses to fungal biocontrol agents. Annu Rev Phytopathol 48:21–43. doi:10.1146/annurev-phyto-073009-114450

    Article  CAS  PubMed  Google Scholar 

  7. Lorito M, Woo SL, Harman GE, Monte E (2010) Translational research on Trichoderma: from ‘omics to the field. Annu Rev Phytopathol 48:395–417. doi:10.1146/annurev-phyto-073009-114314

    Article  CAS  PubMed  Google Scholar 

  8. Chet T (1987) Trichoderma—application, mode of action, and potential as a biocontrol agent of soil-borne plant pathogenic fungi. In: Chet P (ed) Innovative approaches to plant disease control. Wiley, New York, pp 137–160

    Google Scholar 

  9. Wiest A, Grzegorski D, Xu BW, Goulard C, Rebuffat S, Ebbole DJ, Bodo B, Kenerley C (2002) Identification of peptaibols from Trichoderma virens and cloning of a peptaibols synthetase. J Biol Chem 227:20862–20868

    Article  Google Scholar 

  10. Vinale F, Marra R, Scala F, Ghisalberti EL, Lorito M, Sivasithamparam K (2006) Major secondary metabolites produced by two commercial Trichoderma strains active against different phytopathogens. Lett Appl Microbiol 43:143–148. doi:10.1111/j.1472-765X.2006.01939.x

    Article  CAS  PubMed  Google Scholar 

  11. Sun R (2013) Resource collection, identification and biocontrol evaluation of Trichoderma isolated from Southern China. Master thesis, Shanghai Jiao Tong University

  12. Wang B, LI G, Guo Y, Chen J (2012) Comparison of antagonistic effects of four Trichoderma strains. Chin J Biol Control 28:147–151

    Google Scholar 

  13. Morton DJ, Stroube WH (1955) Antagonistic and stimulating effects of soil micro-organism of Sclerotium. Phytopathology 45:417–420

    Google Scholar 

  14. Li Y, Fu K, Gao S, Wu Q, Fan L, Chen J (2013) Impact on bacterial community in midguts of the Asian Corn Borer Larvae by transgenic Trichoderma strain overexpressing a heterologous chit42 gene with chitin-binding domain. PLoS One 8:e55555. doi:10.1371/journal.pone.0055555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Silva BDS, Ulhoa CJ, Batista KA, Yamashita F, Fernandes KF (2011) Potential fungal inhibition by immobilized hydrolytic enzymes from trichoderma asperellum. J Agri Food Chem 59:8148–8154. doi:10.1021/jf2009815

    Article  CAS  Google Scholar 

  16. Noronha EF, Ulhoa CJ (2000) Characterization of a 29-kDa beta-1,3-glucanase from Trichoderma harzianum. FEMS Microbiol Lett 183:119–123. doi:10.1111/j.1574-6968.2000.tb08944.x

    CAS  PubMed  Google Scholar 

  17. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  18. Xie G, Zheng X, Qi X, Cao Y, Chi Y, Su M, Ni Y, Qiu Y, Liu Y, Li H, Zhao A, Jia W (2010) Metabonomic evaluation of melamine-induced acute renal toxicity in rats. J Proteome Res 9:125–133. doi:10.1021/pr900333h

    Article  CAS  PubMed  Google Scholar 

  19. Xie G, Ye M, Wang Y, Ni Y, Su M, Huang H, Qiu M, Zhao A, Zheng X, Chen T, Jia W (2009) Characterization of Pu-erh tea using chemical and metabolic profiling approaches. J Agric Food Chem 57:3046–3054. doi:10.1021/jf804000

    Article  CAS  PubMed  Google Scholar 

  20. Ni Y, Su MM, Qiu YP, Chen MJ, Liu YM, Zhao AH, Jia W (2007) Metabolic profiling using combined GC-MS and LC-MSprovides a systems understanding of aristolochic acid-induced nephrotoxicity in rat. FEBS Lett 581:707–711. doi:10.1016/j.febslet.2007.01.036

    Article  CAS  PubMed  Google Scholar 

  21. Li J, Fu J, Yan X, Li H (2006) Analysis of temporal dynamics of Curvularia leaf spot of maize (Curvularia lunata) epidemic and yield loss. J Shengyang Agric Univ 37:835–838

    Google Scholar 

  22. Viterbo A, Ramot O, Chemin L, Chet I (2002) Significance of lytic enzymes from Trichoderma spp. in the biocontrol of fungal plant pathogens. Anton Leeuw Int J 81:549–556

    Article  CAS  Google Scholar 

  23. Qualhato TF, Lopes FAC, Steindorff AS, Brandão RS, Jesuino RSA, Ulhoa CJ (2013) Mycoparasitism studies of Trichoderma species against three phytopathogenic fungi: evaluation of antagonism and hydrolytic enzyme production. Biotechnol Lett 35:1461–1468. doi:10.1007/s10529-013-1225-3

    Article  CAS  PubMed  Google Scholar 

  24. Atanasova L, Crom SL, Gruber S, Coulpier F, Seidl-Seiboth V, Kubicek CP, Druzhinina IS (2013) Comparative transcriptomics reveals different strategies of Trichoderma mycoparasitism. BMC Genom 14:121. doi:10.1186/1471-2164-14-121

    Article  CAS  Google Scholar 

  25. Mahmoud HE, Amgad AS, Anas E, Younes YM (2015) Characterization of novel Trichoderma asperellum isolates to select effective biocontrol agents against tomato fusarium wilt. Plant Pathol J 31:50–60. doi:10.5423/PPJ.OA.09.2014.0087

    Article  Google Scholar 

  26. Rodríguez MA, Cabrera G, Godeas A (2012) Soil-borne fungi act as biocontrol agents: the role of antifungal metabolite production. In: Brar SK (ed) Biocontrol: management, process and challenges. Nova Science Publishers, New York, pp 63–80

    Google Scholar 

  27. Daniel JF, Filho ER (2007) Peptaibols of Trichoderma. Nat Prod Rep 24:1128–1141. doi:10.1039/B618086H

    Article  CAS  PubMed  Google Scholar 

  28. Szekeres A, Leitgeb B, Kredics L, Antal Z, Hatvani L, Manczinger L, Vagvolgyi C (2005) Peptaibols and related peptaibiotics of Trichoderma. A review. Acta Microbiol Immunol Hung 52:137–168. doi:10.1556/AMicr.52.2005.2.2

    Article  CAS  PubMed  Google Scholar 

  29. Dubey SC, Tripathi A, Dureja P, Grover A (2011) Characterization of secondary metabolites and enzymes produced by Trichoderma species and their efficacy against plant pathogenic fungi. Indian J Agr Sci 81:455–461

    CAS  Google Scholar 

  30. Luo Y, Zhang DD, Dong XW, Zhao PB, Chen LL, Song XY, Wang XJ, Chen XL, Shi M, Zhang YZ (2010) Antimicrobial peptaibols induce defense responses and systemic resistance in tobacco against tobacco mosaic virus. FEMS Microbiol Lett 313:120–126. doi:10.1111/j.1574-6968.2010.02135.x

    Article  CAS  PubMed  Google Scholar 

  31. Keswani C, Mishra S, Sarma BK, Singh SP, Singh HB (2014) Unraveling the efficient applications of secondary metabolites of various Trichoderma spp. Appl Microbiol Biotechnol 98:533–544. doi:10.1007/s00253-013-5344-5

    Article  CAS  PubMed  Google Scholar 

  32. Sanz L, Montero M, Grondona I, Vizcaíno JA, Llobell A, Hermosa R, Monte E (2004) Cell wall-degrading isoenzyme profiles of Trichoderma biocontrol strains show correlation with rDNA taxonomic species. Curr Genet 46:277–286. doi:10.1007/s00294-004-0532-6

    Article  CAS  PubMed  Google Scholar 

  33. Larralde-Corona CP, Santiago-Mena MR, Sifuentes-Rincon AM, Rodriguez-Luna IC, Rodriguez-Perez MA, Shirai K, Narvaez-Zapata JA (2008) Biocontrol potential and polyphasic characterization of novel native Trichoderma strains against Macrophomina phaseolina isolated from sorghum and common bean. Appl Microbiol Biotechnol 80:167–177. doi:10.1007/s00253-008-1532-0

    Article  CAS  PubMed  Google Scholar 

  34. Saravanakumar K, Yu C, Dou K, Wang M, Li Y, Chen J (2016) Synergistic effect of Trichoderma-derived antifungal metabolites and cell wall degrading enzymes on enhanced biocontrol of Fusarium oxysporum f. sp. cucumerinum. Biol Control 94:37–46. doi:10.1016/j.biocontrol.2015.12.001

    Article  CAS  Google Scholar 

  35. Lorito M, Peterbauer C, Hayes CK, Harman GE (1994) Synergistic interaction between fungal cell wall degrading enzymes and different antifungal compounds enhances inhibition of spore germination. Microbiology 140:623–629. doi:10.1099/00221287-140-3-623

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the financial support from the Special Project of Basic Work for Science and Technology (2014FY120900), the key project of the basic research of Shanghai Municipal Science and Technology Commission (12JC1404600), Natural Science Foundation of China (No. 31201557), Natural Science Fund of Shanghai (No.12ZR1414100), the special fund of Modern Agricultural Industry Technology System (CARS-02), Ministry of Education University Doctoral Foundation (No. 20120073120070), and the SJTU Medical-Engineering Cross Research Fund (No. YG2015MS37).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Chen.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 151 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Sun, R., Yu, J. et al. Antagonistic and Biocontrol Potential of Trichoderma asperellum ZJSX5003 Against the Maize Stalk Rot Pathogen Fusarium graminearum . Indian J Microbiol 56, 318–327 (2016). https://doi.org/10.1007/s12088-016-0581-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12088-016-0581-9

Keywords