Abstract
Constacyclic codes are generalizations of cyclic codes, which form a well-known family of linear codes containing many optimal codes. In this paper, we determine all constacyclic codes of length ℓ p w over the finite field \(\mathbb {F}_{q}\) with q elements, where q is a power of the prime p, ℓ is a positive integer coprime to q and w ≥ 0 is an integer. We also illustrate our results with some examples.
Similar content being viewed by others
References
Apostol, T.M.: Introduction to analytic number theory. Springer (1976)
Bakshi, G.K., Raka, M.: A class of constacyclic codes over a finite field. Finite Fields Appl. 18(2), 362–377 (2012)
Batoul, A., Guenda, K., Gulliver, T. A.: Some constacyclic codes over finite chain rings. arXiv:1212.3704v1 [cs.IT]
Berlekamp, E.R.: Algebraic coding theory. McGraw-Hill Book Company, New York (1968)
Chen, B., Fan, Y., Lin, L., Liu, H.: Constacyclic codes over finite fields. Finite Fields Appl. 18(6), 1217–1231 (2012)
Dinh, H.Q.: Negacyclic codes of length 2s over Galois rings. IEEE Trans. Inform. Theory 51(12), 4252–4262 (2005)
Dinh, H.Q.: On the linear ordering of some classes of negacyclic and cyclic codes and their distance distributions. Finite Fields Appl. 14(1), 22–40 (2008)
Dinh, H.Q.: On some classes of repeated-root constacyclic codes of length a power of 2 over Galois rings, Advances in ring theory, Trends Math. Birkh?user/Springer Basel AG, Basel (2010)
Dinh, H.Q.: Constacyclic codes of length p s over \(\mathbb {F}_{p^{m}} + u\mathbb {F}_{p^{m}}\). J. Algebra 324(5), 940–950 (2010)
Dinh, H.Q.: Repeated-root constacyclic codes of length 2p s. Finite Fields Appl. 18(1), 133–143 (2012)
Dinh, H.Q.: Structure of repeated-root constacyclic codes of length 3p s and their duals. Discrete Math. 313(9), 983–991 (2013)
Dinh, H.Q.: On repeated-root constacyclic codes of length 4p s. Asian-European J. Math. 6(2) (2013). doi:10.1142/S1793557113500204
Guenda, K., Gulliver, T.A.: Self-dual repeated-root cyclic and negacyclic codes over finite fields. Proc. IEEE Int. Symp. Inform. Theory, 2904–2908 (2012)
Kumar, P., Arora, S.K.: λ-mapping and primitive idempotents in semisimple ring \(\mathfrak {R}_{m},\). Comm. Algebra 41(10), 3679–3694 (2013)
Sharma, A.: Self-dual and self-orthogonal negacyclic codes of length 2m p n over a finite field. Discrete Math. 338(4), 576–592 (2015)
Sharma, A.: Simple-root negacyclic codes of length 2p n ℓ m over a finite field. J. Korean Math. Soc. 52(5), 965–989 (2015)
Sharma, A.: Repeated-root constacyclic codes of length ℓ t p s and their dual codes. Cryptogr. Commun. 7(2), 229–255 (2015)
Sharma, A., Bakshi, G.K., Raka, M.: Polyadic codes of prime power length. Finite Fields Appl 13(4), 1071–1085 (2007)
Author information
Authors and Affiliations
Corresponding author
Additional information
Research support by DST India, under grant no. SERB/F/3551/2012-13, is gratefully acknowledged.
Rights and permissions
About this article
Cite this article
Sharma, A., Rani, S. On constacyclic codes over finite fields. Cryptogr. Commun. 8, 617–636 (2016). https://doi.org/10.1007/s12095-015-0163-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12095-015-0163-4