Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Several classes of permutation trinomials from Niho exponents

  • Published:
Cryptography and Communications Aims and scope Submit manuscript

Abstract

Motivated by recent results on the constructions of permutation polynomials with few terms over the finite field \({\mathbb F}_{2^n}\), where n is a positive even integer, we focus on the construction of permutation trinomials over \({\mathbb F}_{2^n}\) from Niho exponents. As a consequence, several new classes of permutation trinomials over \({\mathbb F}_{2^n}\) are constructed from Niho exponents based on some subtle manipulation of solving equations with low degrees over finite fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akbary, A., Wang, Q.: On polynomials of the form x r h(x (q − 1)/l), International Journal of Mathematics and Mathematical Sciences. Article ID 23408 (2007)

  2. Blokhuis, A., Coulter, R.S., Henderson, M., O’Keefe, C.M.: Permutations amongst the Dembowski-Ostrom polynomials. In: Jungnickel, D., Niederreiter, H. (eds.) Finite Fields and Applications: Proceedings of the Fifth International Conference on Finite Fields and Applications, pp 37–42 (2001)

  3. Dickson, L.E.: The analytic representation of substitutions on a power of a prime number of letters with a discussion of the linear group. Ann. Math. 11, 65–120 (1896)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ding, C., Qu, L., Wang, Q., Yuan, J., Yuan, P.: Permutation trinomials over finite fields with even characteristic. SIAM J. Discret. Math. 29, 79–92 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  5. Dobbertin, H.: Almost perfect nonlinear power functions on G F(2n): The Welch case. IEEE Trans. Inf. Theory 45, 1271–1275 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  6. Dobbertin, H.: Almost perfect nonlinear power functions on G F(2n): the Niho case. Inf. Comput. 151(1-2), 57–72 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  7. Helleseth, T.: Some results about the cross-correlation function between two maximal linear sequences. Discret. Math. 16(3), 209–232 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  8. Hermite, C.h.: Sur les fonctions de sept lettres. C. R. Acad. Sci. Paris 57, 750–757 (1863)

    Google Scholar 

  9. Hou, X.: A survey of permutation binomials and trinomials over finite fields. In: Kyureghyan, G., Mullen, G.L., Pott, A. (eds.) Topics in Finite Fields, Proceedings of the 11th International Conference on Finite Fields and Their Applications, Contemp. Math., Magdeburg, Germany, July 2013, vol. 632, AMS, pp 177–191 (2015)

  10. Hou, X.: A class of permutation trinomials over finite fields. Acta Arith 162, 51–64 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hou, X.: Permutation polynomials over finite fields–A survey of recent advances. Finite Fields Appl. 32, 82–119 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hou, X.: Determination of a type of permutation trinomials over finite fields, II. Finite Fields Appl. 35, 16–35 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. Lahtonen, J.: On the odd and the aperiodic correlation properties of the Kasami sequences. IEEE Trans. Inf. Theory 41(5), 1506–1508 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  14. Leonard, P.A., Williams, K.S.: Quartics over GF (2n). Proc. Am. Math. Soc., 347–350 (1972)

  15. Lee, J.B., Park, Y.H.: Some permutation trinomials over finite fields. Acta Math. Sci. 17, 250–254 (1997)

    MATH  Google Scholar 

  16. Li, K., Qu, L., Chen, X.: New classes of permutation binomials and permutation trinomials over finite fields, available online: http://arxiv.org/pdf/1508.07590.pdf

  17. Lidl, R., Niederreiter, H.: Finite Fields, 2nd ed. Cambridge Univ. Press, Cambridge (1997)

    MATH  Google Scholar 

  18. Niho, Y.: Multivalued cross-correlation functions between two maximal linear recursive sequence, Ph.D. dissertation. Univ Southern Calif., Los Angeles (1972)

    Google Scholar 

  19. Park, Y.H., Lee, J.B.: Permutation polynomials and group permutation polynomials. Bull. Austral. Math. Soc. 63, 67–74 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  20. Tu, Z., Zeng, X., Hu, L., Li, C.: A class of binomial permutation polynomials, available online: http://arxiv.org/pdf/1310.0337v1.pdf

  21. Tu, Z., Zeng, X., Hu, L.: Several classes of complete permutation polynomials. Finite Fields and Appl. 25, 182–193 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. Wan, D., Lidl, R.: Permutation polynomials of the form x r h(x (q − 1)/d) and their group structure. Monatsh. Math. 112, 149–163 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  23. Zeng, X., Tian, S., Tu, Z.: Permutation polynomials from trace functions over finite fields. Finite Fields Appl. 35, 36–51 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  24. Zhu, X., Zeng, X., Chen, Y.: Some binomial and trinomial differentially 4-uniform permutation polynomials. Int. J. Found. Comput. Sci. 26(4), 487–498 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  25. Zieve, M.: Permutation polynomials on \(\mathbb {F}_{q}\) induced form Rédei function bijections on subgroups of \(\mathbb {F}_{q}^{*}\), available online: http://arxiv.org/pdf/1310.0776v2.pdf

  26. Zieve, M.: On some permutation polynomials over \(\mathbb {F}_{q}\) of the form x r h(x (q − 1)/d). Proc. Amer. Math. Soc. 137, 2209–2216 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the editor and reviewers for their comments that improved the quality of this paper. This work was supported by the Norwegian Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nian Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, N., Helleseth, T. Several classes of permutation trinomials from Niho exponents. Cryptogr. Commun. 9, 693–705 (2017). https://doi.org/10.1007/s12095-016-0210-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12095-016-0210-9

Keywords

Mathematics Subject Classification (2010)