Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

R-2 composition tests: a family of statistical randomness tests for a collection of binary sequences

  • Published:
Cryptography and Communications Aims and scope Submit manuscript

Abstract

In this article a family of statistical randomness tests for binary strings are introduced, based on Golomb’s pseudorandomness postulate R-2 on the number of runs. The basic idea is to construct recursive formulae with computationally tenable probability distribution functions. The technique is illustrated on testing strings of \(2^{7}\), \(2^{8}\), \(2^{10}\) and \(2^{12}\) bits. Furthermore, the expected value of the number of runs with a specific length is obtained. Finally the tests are applied to several collections of strings arising from different pseudorandom number generators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Golomb, W.S.: Shift Register Sequences. Aegean Park Press, Laguna Hills (1982)

    MATH  Google Scholar 

  2. Knuth, D.E.: The Art of Computer Programming, 3rd edn., vol. 2, Addison-Wesley Longman Publishing Co., Inc., Seminumerical Algorithms, Boston (1997)

  3. L’ecuyer, P., Simard, R.: Testu01: A C library for empirical testing of random number generators. ACM Trans. Math. Softw. 33(4), 22 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Mood, A.M.: The distribution theory of runs. Ann. Math. Stat. 11.4, 367–392 (1940)

    Article  MathSciNet  MATH  Google Scholar 

  5. Fu, J.C., Koutras, M.V.: Distribution theory of runs: a Markov chain approach. J. Am. Stat. Assoc. 89.427, 1050–1058 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  6. Marsaglia, G.: The Marsaglia Random Rumber CDROM Including the Diehard Battery of Tests of Tandomness, http://www.stat.fsu.edu/pub/diehard/ (1995)

  7. Bassham III, L.E., Rukhin, A.L., Soto, J., et al.: A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications. Tech. Rep Sp 800-22 Rev. 1a, NIST, Gaithersburg (2010)

    Book  Google Scholar 

  8. Doğanaksoy, A., Sulak, F., Uğuz, M., Şeker, O., Akcengiz, Z.: New statistical randomness tests based on length of runs. Math. Probl. Eng. 2015(626408), 14 (2015)

    MathSciNet  MATH  Google Scholar 

  9. van Lint, J.H., Wilson, R.M.: A Course in Combinatorics. Cambridge University Press, New York (1993)

    MATH  Google Scholar 

  10. Chinn, P., Heubach, S.: Compositions of n with no occurence of k. Congressus Numerantium 164, 33–51 (2003)

    MathSciNet  MATH  Google Scholar 

  11. Heubach, S., Mansour, T.: Compositions of n with Parts in a Set. Congressus Numerantium 168, 127–143 (2004)

    MathSciNet  MATH  Google Scholar 

  12. Richmond, B., Knopfmacher, A.: Compositions with distinct parts. Aequationes Math. 49(1-2), 86–87 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  13. Malandro, M.E.: Integer Compositions with Part Sizes not Exceeding k, Preprint available at: https://arxiv.org/pdf/1108.0337v2.pdf (2012)

  14. Munagi, A.O., Sellers, J.A.: Some inplace identities for integer compositions. Quaest. Math. 38(4), 535–540 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. Chinn, P., Heubach, S.: (1,K)-compositions. Congressus Numerantium 164, 183–194 (2003)

    MathSciNet  MATH  Google Scholar 

  16. Jaklic, G., Vitrih, V., Zagar, E.: Closed form formula for the number of restricted compositions. Bull. Aus. Math. Soc. 81, 289–297 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Sulak, F., Doğanaksoy, A., Ege, B., Koçak, O.: Evaluation of Randomness Test Results for Short Sequences, Sequences and Their Applications, vol. 6338, pp 310–319. SETA 2010, Lecture Notes in Computer Science, Berlin (2010)

    MATH  Google Scholar 

  18. Daeman, J., Rijmen, V.: The Design of Rijndael: AES - the Advanced Encryption Standard. Springer, Berlin (2002)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhiddin Uğuz.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

figure c
Table 10 Bin probabilities for \(p_{a}(n,r)\) (n = 128)
Table 11 Bin probabilities for \(p_{a}(n,r)\) (n = 256)
Table 12 Bin probabilities for \(p_{a}(n,r)\) (n = 1024)
Table 13 Bin probabilities for \(p_{a}(n,r)\) (n = 4096)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uğuz, M., Doğanaksoy, A., Sulak, F. et al. R-2 composition tests: a family of statistical randomness tests for a collection of binary sequences. Cryptogr. Commun. 11, 921–949 (2019). https://doi.org/10.1007/s12095-018-0334-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12095-018-0334-1

Keywords

Mathematics Subject Classification (2010)