Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

MSCANet: A multi-scale context-aware network for remote sensing object detection

  • Research
  • Published:
Earth Science Informatics Aims and scope Submit manuscript

Abstract

With the rapid development of remote sensing technology and the widespread application of remote sensing images, remote sensing object detection has become a hot research direction. However, we observe three primary challenges in remote sensing object detection: scale variations, small objects, and complex backgrounds. To address these challenges, we propose a novel detector, he Multi-Scale Context-Aware Network (MSCANet). First, we introduce a Multi-Scale Fusion Module (MSFM) that provides various scales of receptive fields to extract contextual information of objects at different scales adequately. Second, the Multi-Scale Guidance Module (MSGM) is proposed, which fuses deep and shallow feature maps from multiple scales, reducing the loss of feature information in small objects. Finally, we introduce the Context-Aware DownSampling Module (CADM). It dynamically adjusts context information weights at different scales, effectively reducing interference from complex backgrounds. Experimental results demonstrate that the proposed MSCANet achieves superior performance results with mean average precision (mAP) of 97.1% and 73.4% on the challenging RSOD and DIOR datasets, respectively, which indicates that the proposed network is suitable for remote sensing object detection and is of a great reference value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

References

  • Bao W, Huang C, Hu G, Su B, Yang X (2024) Detection of fusarium head blight in wheat using uav remote sensing based on parallel channel space attention. Comput Electron Agric 217:108630

    Article  Google Scholar 

  • Behera TK, Bakshi S, Sa PK (2022) Vegetation extraction from uav-based aerial images through deep learning. Comput Electron Agric 198:107094

    Article  Google Scholar 

  • Cao L, Luo F, Chen L, Sheng Y, Wang H, Wang C, Ji R (2017) Weakly supervised vehicle detection in satellite images via multi-instance discriminative learning. Pattern Recognit 64:417–424

    Article  Google Scholar 

  • Carion N, Massa F, Synnaeve G, Usunier N, Kirillov A, Zagoruyko S (2020) End-to-end object detection with transformers. In:European conference on computer vision, pp 213–229 Springer

  • Chalavadi V, Jeripothula P, Datla R, Ch SB (2022) Msodanet: a network for multi-scale object detection in aerial images using hierarchical dilated convolutions. Pattern Recognit 126:108548

    Article  Google Scholar 

  • Chen Y, Wang J, Zhang Y, Liu Y (2023) Arbitrary-oriented ship detection based on kullback-leibler divergence regression in remote sensing images. Earth Sci Inf 16(4):3243–3255

    Article  Google Scholar 

  • Cheng G, Han J (2016) A survey on object detection in optical remote sensing images. ISPRS J Photogrammetry Remote Sens 117:11–28

    Article  Google Scholar 

  • Ding J, Xue N, Xia G, Bai X, Yang W, Yang M, Belongie S, Luo J, Datcu M Pelillo M Object detection in aerial images: A large-scale benchmark and challenges. Arxiv 2021. arXiv preprint arXiv:2102.12219

  • Dong R, Xu D, Zhao J, Jiao L, An J (2019) Sig-nms-based faster r-cnn combining transfer learning for small target detection in vhr optical remote sensing imagery. IEEE Trans Geosci Remote Sens 57(11):8534–8545

    Article  Google Scholar 

  • Gao T, Liu Z, Zhang J, Wu G, Chen T (2023) A task-balanced multi-scale adaptive fusion network for object detection in remote sensing images. IEEE Trans Geosci Remote Sens 61:1–15

    Google Scholar 

  • Gao T, Li Z, Wen Y, Chen T, Niu Q, Liu Z (2023b) Attention-free global multiscale fusion network for remote sensing object detection. IEEE Trans Geosci Remote Sens 62:1–14

    Google Scholar 

  • Gao T, Niu Q, Zhang J, Chen T, Mei S, Jubair A (2023c) Global to local: a scale-aware network for remote sensing object detection. IEEE Trans Geosci Remote Sens 61:1–14

    Google Scholar 

  • Girshick R (2015) Fast r-cnn. In:Proceedings of the IEEE international conference on computer vision, pp 1440–1448

  • Girshick R, Donahue J, Darrell T, Malik J (2014) Rich feature hierarchies for accurate object detection and semantic segmentation. In:Proceedings of the IEEE conference on computer vision and pattern recognition, pp 580–587

  • Guo Y, Ji J, Lu X, Xie H, Tong X (2020) Geospatial object detection with single shot anchor-free network. In:IGARSS 2020–2020 IEEE International Geoscience and Remote Sensing Symposium, pp 280–283 IEEE

  • Guo M, Shu S, Ma S, Wang L-J (2021) Using high-resolution remote sensing images to explore the spatial relationship between landscape patterns and ecosystem service values in regions of urbanization. Environ Sci Pollut Res 28(40):56139–56151

    Article  Google Scholar 

  • Guo Y, Tong X, Xu X, Liu S, Feng Y, Xie H (2022) An anchor-free network with density map and attention mechanism for multiscale object detection in aerial images. IEEE Geosci Remote Sens Lett 19:1–5

    Google Scholar 

  • He K, Zhang X, Ren S, Sun J (2015) Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Trans Pattern Anal Mach Intell 37(9):1904–1916

    Article  Google Scholar 

  • He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In:Proceedings of the IEEE conference on computer vision and pattern recognition, pp 770–778

  • Huang W, Li G, Chen Q, Ju M, Qu J (2021) Cf2pn: a cross-scale feature fusion pyramid network based remote sensing target detection. Remote Sens 13(5):847

    Article  Google Scholar 

  • Hui Y, You S, Hu X, Yang P, Zhao J (2024) Seb-yolo: an improved yolov5 model for remote sensing small target detection. Sensors 24(7):2193

    Article  Google Scholar 

  • Jocher G, Chaurasia A, Qiu J (2023) Ultralytics yolo (version 8.0.0) [computer software]. https://github.com/ultralytics/ultralytics

  • Li K, Wan G, Cheng G, Meng L, Han J (2020) Object detection in optical remote sensing images: A survey and a new benchmark. ISPRS J. Photogramm. Remote Sens. 159, 296–307

  • Li W, Wei W, Zhang L (2021) Gsdet: object detection in aerial images based on scale reasoning. IEEE Trans Image Process 30:4599–4609

    Article  Google Scholar 

  • Li C, Li L, Jiang H, Weng K, Geng Y, Li L, Ke Z, Li Q, Cheng M, Nie W (2022) Yolov6: a single-stage object detection framework for industrial applications. arXiv Preprint arXiv:2209.02976

  • Li Y, Hou Q, Zheng Z, Cheng M-M, Yang J, Li X (2023) Large selective kernel network for remote sensing object detection. In:Proceedings of the IEEE/CVF International Conference on Computer Vision, pp 16794–16805

  • Lin T-Y, Maire M, Belongie S, Hays J, Perona P, Ramanan D, Dollár P, Zitnick CL (2014) Microsoft coco: Common objects in context. In:Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6–12, 2014, Proceedings, Part V 13, pp 740–755 Springer

  • Lin T-Y, Goyal P, Girshick R, He K, Dollar P (2017) Focal loss for dense object detection. IEEE Trans Pattern Anal Mach Intell 42(2):318–327. https://doi.org/10.1109/iccv.2017.324

    Article  Google Scholar 

  • Lin T-Y, Dollár P, Girshick R, He K, Hariharan B, Belongie S (2017b) Feature pyramid networks for object detection. In:Proceedings of the IEEE conference on computer vision and pattern recognition, pp 2117–2125

  • Liu S, Qi L, Qin H, Shi J, Jia J (2018) Path aggregation network for instance segmentation. In:Proceedings of the IEEE conference on computer vision and pattern recognition, pp 8759–8768

  • Liu Y, Li Q, Yuan Y, Du Q, Wang Q (2021) Abnet: adaptive balanced network for multiscale object detection in remote sensing imagery. IEEE Trans Geosci Remote Sens 60:1–14

    CAS  Google Scholar 

  • Liu J, Li S, Zhou C, Cao X, Gao Y, Wang B (2021b) Sraf-net: a scene-relevant anchor-free object detection network in remote sensing images. IEEE Trans Geosci Remote Sens 60:1–14

    CAS  Google Scholar 

  • Long Y, Gong Y, Xiao Z, Liu Q (2017) Accurate object localization in remote sensing images based on convolutional neural networks. IEEE Trans Geosci Remote Sens 55(5):2486–2498

    Article  Google Scholar 

  • Ma Y-Y, Sun Z-L, Zeng Z, Lam K-M (2021) Corn-plant counting using scare-aware feature and channel interdependence. IEEE Geosci Remote Sens Lett 19:1–5

    Google Scholar 

  • Qin H, Wang J, Mao X, Zhao Za, Gao X, Lu W (2024) An improved faster r-cnn method for landslide detection in remote sensing images. J Geovisualization Spat Anal 8(1):2

    Article  Google Scholar 

  • Redmon J, Farhadi A (2017) Yolo9000: Better, faster, stronger. In:2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp 6517–6525

  • Redmon J, Divvala S, Girshick R, Farhadi A (2016) You only look once: Unified, real-time object detection. In:IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp 779–788

  • Song G, Du H, Zhang X, Bao F, Zhang Y (2024) Small object detection in unmanned aerial vehicle images using multi-scale hybrid attention. Eng Appl Artif Intell 128:107455

    Article  Google Scholar 

  • Tan M, Le Q (2019) Efficientnet: Rethinking model scaling for convolutional neural networks. In:International conference on machine learning, pp 6105–6114 PMLR

  • Tan M, Pang R, Le QV (2020) Efficientdet: Scalable and efficient object detection. In:Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 10781–10790

  • Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser Ł, Polosukhin I (2017) Attention is all you need. Advances in neural information processing systems 30

  • Wang G, Zhuang Y, Chen H, Liu X, Zhang T, Li L, Dong S, Sang Q (2021) Fsod-net: full-scale object detection from optical remote sensing imagery. IEEE Trans Geosci Remote Sens 60:1–18

    Google Scholar 

  • Wang Y, Bashir SMA, Khan M, Ullah Q, Wang R, Song Y, Guo Z, Niu Y (2022) Remote sensing image super-resolution and object detection: Benchmark and state of the art. Expert Syst Appl 197:116793

    Article  Google Scholar 

  • Wang C-Y, Bochkovskiy A, Liao H-YM (2023) Yolov7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. In:Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 7464–7475

  • Wu Y, Zhang K, Wang J, Wang Y, Wang Q, Li X (2022) Gcwnet: a global context-weaving network for object detection in remote sensing images. IEEE Trans Geosci Remote Sens 60:1–12

    Article  Google Scholar 

  • Xiao Z, Liu Q, Tang G, Zhai X (2015) Elliptic fourier transformation-based histograms of oriented gradients for rotationally invariant object detection in remote-sensing images. Int J Remote Sens 36(2):618–644

    Article  Google Scholar 

  • Yao G, Zhu S, Zhang L, Qi M (2024) Hp-yolov8: high-precision small object detection algorithm for remote sensing images. https://doi.org/10.20944/preprints202406.1963.v1. Preprints https://doi.org/

  • Ye Y, Ren X, Zhu B, Tang T, Tan X, Gui Y, Yao Q (2022) An adaptive attention fusion mechanism convolutional network for object detection in remote sensing images. Remote Sens 14(3):516

    Article  Google Scholar 

  • Zhang G, Lu S, Zhang W (2019) Cad-net: a context-aware detection network for objects in remote sensing imagery. IEEE Trans Geosci Remote Sens 57(12):10015–10024

    Article  Google Scholar 

  • Zhang Y, Ning G, Chen S, Yang Y (2021) Impact of rapid urban sprawl on the local meteorological observational environment based on remote sensing images and gis technology. Remote Sens 13(13):2624

    Article  Google Scholar 

  • Zhang C, Lam K-M, Wang Q (2023) Cof-net: a progressive coarse-to-fine framework for object detection in remote-sensing imagery. IEEE Trans Geosci Remote Sens 61:1–17

    Google Scholar 

  • Zhang G, Yu W, Hou R (2024) Mfil-fcos: a multi-scale fusion and interactive learning method for 2d object detection and remote sensing image detection. Remote Sens 16(6):936

    Article  Google Scholar 

  • Zhao C, Guo D, Shao C, Zhao K, Sun M, Shuai H (2024) Satdetx-yolo: a more accurate method for vehicle target detection in satellite remote sensing imagery. IEEE Access

  • Zhu X, Su W, Lu L, Li B, Wang X, Dai J (2020) Deformable detr: deformable transformers for end-to-end object detection. arXiv preprint arXiv:2010.04159

  • Zou Z, Chen K, Shi Z, Guo Y, Ye J (2023) Object detection in 20 years: a survey. Proc IEEE 111(3):257–276

    Article  Google Scholar 

Download references

Funding

This work was supported by the Project of Research and Develop the Key Technology of Mine Explosion-proof Pure Electric Transport Vehicle. Key Research and Development Projects in Anhui Province (202004 b11020029).

Author information

Authors and Affiliations

Authors

Contributions

Huaping Zhou and Weidong Liu wrote the main manuscript text and designed the remote sensing object detection model. Kelei Sun performed the data processing and analysis. Jin Wu and Tao Wu prepared Figs. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 and 17. All authors reviewed the manuscript.

Corresponding author

Correspondence to Weidong Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Communicated by Hassan Babaie.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, H., Liu, W., Sun, K. et al. MSCANet: A multi-scale context-aware network for remote sensing object detection. Earth Sci Inform 17, 5521–5538 (2024). https://doi.org/10.1007/s12145-024-01447-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12145-024-01447-8

Keywords