Abstract
This paper improves convergence results of an efficient Levenberg–Marquardt (LM) method with the LM parameter \(\uplambda _k=\frac{\mu _k\Vert F_k\Vert }{1+\Vert F_k\Vert }\). The global and superlinear convergence are proved under the H\(\ddot{o}\)lderian continuity and the H\(\ddot{o}\)lderian local error bound conditions, which are weaker than the Lipschitz continuity and the local error bound, respectively. Numerical experiments verify the convergence of our algorithm for singular problems, which satisfy the H\(\ddot{o}\)lderian continuity and the H\(\ddot{o}\)lderian local error bound conditions.
Similar content being viewed by others
References
Ahookhosh, M.A., Francisco, J.A., Fleming, R.M.T., et al.: Local convergence of the Levenberg–Marquardt method under H\(\ddot{o}\)lder metric subregularity. arXiv: 1703.07461
Amini, K., Rostami, F., Caristi, G.: An efficient Levenberg–Marquardt method with a new LM parameter for systems of nonlinear equations. Optimization 67(5), 1–14 (2018)
Behling, R., Iusem, A.: The effect of calmness on the solution set of systems of nonlinear equations. Math. Program. 137(1–2), 155–165 (2013)
Dennis, J.E., Schnabel, R.B.: Numerical Methods for Unconstrained Optimization and Nonlinear Equation. Science Press, Beijing (2009)
Fan, J.Y., Yuan, Y.X.: On the quadratic convergence of the Levenberg–Marquardt method without nonsingularity assumption. Computing 74(1), 23–39 (2005)
Fan, J.Y.: A modified Levenberg–Marquardt algorithm for singular system of nonlinear equations. J. Comput. Math. 21(5), 625–636 (2003)
Fan, J.Y., Huang, J.C., Pan, J.Y.: An adaptive multi-step Levenberg–Marquardt method. J. Sci. Comput. 78(1), 531–548 (2019)
Fan, J.Y., Pan, J.Y.: A modified trust region algorithm for nonlinear equations with new updating rule of trust region radius. Int. J. Comput. Math. 87(14), 3186–3195 (2010)
Levenberg, K.: A method for the solution of certain nonlinear problems in least squares. Quart. Appl. Math. 2, 164–168 (1944)
Li, D.H., Fukushima, M.: A global and superlinear convergent Gauss-Newton-based BFGS method for symmetric nonlinear equations. SIAM J. Numer. Anal. 37(1), 152–172 (1999)
Li, D.H., Fukushima, M.: A derivative-free line search and global convergence of Broyden-like method for nonlinear equations. Optim. Methods Softw. 13(3), 181–201 (2000)
Marquardt, D.W.: An algorithm for least-squares estimation of nonlinear parameters. J. Soc. Ind. Appl. Math. 11, 431–441 (1963)
Moré, J.J., Garbow, B.S., Hillstrom, K.E.: Testing unconstrained optimization software. ACM Trans. Math. Softw. 7(1), 17–41 (1981)
Schnabel, R.B., Frank, P.D.: Tensor methods for nonlinear equations. SIAM J. Numer. Anal. 21(5), 815–843 (1984)
Stewart, G.W., Sun, J.G.: Matrix Perturbation Theory. Academic Press Boston, San Diego (1990)
Wang, H.Y., Fan, J.Y.: Convergence rate of the Levenberg–Marquardt method under H\(\ddot{o}\)lderian local error bound. Optim. Methods Softw. 17, 1–20 (2019)
Wang, H.Y., Fan, J.Y.: Convergence properties of inexact Levenberg–Marquardt method under H\(\ddot{o}\)lderian local error bound. J. Ind. Manag. Optim. 17, 2265–2275 (2021)
Yamashita, N., Fukushima, M.: On the rate of convergence of the Levenberg–Marquardt method. Computing 15, 239–249 (2001)
Yuan, Y.X.: Trust region algorithm for nonlinear equations. Information 1, 7–21 (1998)
Zhang, J.L., Wang, Y.: A new trust region method for nonlinear equations. Math. Methods Oper. Res. 58(2), 283–298 (2003)
Zhu, X., Lin, G.H.: Improved convergence results for a modified Levenberg–Marquardt method for nonlinear equations and applications in MPCC. Optim. Methods Softw. 31(4), 1–14 (2016)
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
This work was supported by National Natural Science Foundation of China (11771210), Foundations of Education Department of Hubei Province (B2020151, 2020628) and University Natural Science Foundation of Anhui Province (KJ2020ZD008).
Rights and permissions
About this article
Cite this article
Zeng, M., Zhou, G. Improved convergence results of an efficient Levenberg–Marquardt method for nonlinear equations. J. Appl. Math. Comput. 68, 3655–3671 (2022). https://doi.org/10.1007/s12190-021-01599-6
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12190-021-01599-6
Keywords
- Nonlinear equations
- Levenberg–Marquardt method
- H\(\ddot{o}\)lderian continuity
- H\(\ddot{o}\)lderian local error bound