Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Improved convergence results of an efficient Levenberg–Marquardt method for nonlinear equations

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

This paper improves convergence results of an efficient Levenberg–Marquardt (LM) method with the LM parameter \(\uplambda _k=\frac{\mu _k\Vert F_k\Vert }{1+\Vert F_k\Vert }\). The global and superlinear convergence are proved under the H\(\ddot{o}\)lderian continuity and the H\(\ddot{o}\)lderian local error bound conditions, which are weaker than the Lipschitz continuity and the local error bound, respectively. Numerical experiments verify the convergence of our algorithm for singular problems, which satisfy the H\(\ddot{o}\)lderian continuity and the H\(\ddot{o}\)lderian local error bound conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahookhosh, M.A., Francisco, J.A., Fleming, R.M.T., et al.: Local convergence of the Levenberg–Marquardt method under H\(\ddot{o}\)lder metric subregularity. arXiv: 1703.07461

  2. Amini, K., Rostami, F., Caristi, G.: An efficient Levenberg–Marquardt method with a new LM parameter for systems of nonlinear equations. Optimization 67(5), 1–14 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  3. Behling, R., Iusem, A.: The effect of calmness on the solution set of systems of nonlinear equations. Math. Program. 137(1–2), 155–165 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Dennis, J.E., Schnabel, R.B.: Numerical Methods for Unconstrained Optimization and Nonlinear Equation. Science Press, Beijing (2009)

    Google Scholar 

  5. Fan, J.Y., Yuan, Y.X.: On the quadratic convergence of the Levenberg–Marquardt method without nonsingularity assumption. Computing 74(1), 23–39 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Fan, J.Y.: A modified Levenberg–Marquardt algorithm for singular system of nonlinear equations. J. Comput. Math. 21(5), 625–636 (2003)

    MathSciNet  MATH  Google Scholar 

  7. Fan, J.Y., Huang, J.C., Pan, J.Y.: An adaptive multi-step Levenberg–Marquardt method. J. Sci. Comput. 78(1), 531–548 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  8. Fan, J.Y., Pan, J.Y.: A modified trust region algorithm for nonlinear equations with new updating rule of trust region radius. Int. J. Comput. Math. 87(14), 3186–3195 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Levenberg, K.: A method for the solution of certain nonlinear problems in least squares. Quart. Appl. Math. 2, 164–168 (1944)

    Article  MathSciNet  MATH  Google Scholar 

  10. Li, D.H., Fukushima, M.: A global and superlinear convergent Gauss-Newton-based BFGS method for symmetric nonlinear equations. SIAM J. Numer. Anal. 37(1), 152–172 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  11. Li, D.H., Fukushima, M.: A derivative-free line search and global convergence of Broyden-like method for nonlinear equations. Optim. Methods Softw. 13(3), 181–201 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  12. Marquardt, D.W.: An algorithm for least-squares estimation of nonlinear parameters. J. Soc. Ind. Appl. Math. 11, 431–441 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  13. Moré, J.J., Garbow, B.S., Hillstrom, K.E.: Testing unconstrained optimization software. ACM Trans. Math. Softw. 7(1), 17–41 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  14. Schnabel, R.B., Frank, P.D.: Tensor methods for nonlinear equations. SIAM J. Numer. Anal. 21(5), 815–843 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  15. Stewart, G.W., Sun, J.G.: Matrix Perturbation Theory. Academic Press Boston, San Diego (1990)

    MATH  Google Scholar 

  16. Wang, H.Y., Fan, J.Y.: Convergence rate of the Levenberg–Marquardt method under H\(\ddot{o}\)lderian local error bound. Optim. Methods Softw. 17, 1–20 (2019)

    Google Scholar 

  17. Wang, H.Y., Fan, J.Y.: Convergence properties of inexact Levenberg–Marquardt method under H\(\ddot{o}\)lderian local error bound. J. Ind. Manag. Optim. 17, 2265–2275 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  18. Yamashita, N., Fukushima, M.: On the rate of convergence of the Levenberg–Marquardt method. Computing 15, 239–249 (2001)

    MathSciNet  MATH  Google Scholar 

  19. Yuan, Y.X.: Trust region algorithm for nonlinear equations. Information 1, 7–21 (1998)

    MathSciNet  MATH  Google Scholar 

  20. Zhang, J.L., Wang, Y.: A new trust region method for nonlinear equations. Math. Methods Oper. Res. 58(2), 283–298 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  21. Zhu, X., Lin, G.H.: Improved convergence results for a modified Levenberg–Marquardt method for nonlinear equations and applications in MPCC. Optim. Methods Softw. 31(4), 1–14 (2016)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guanghui Zhou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported by National Natural Science Foundation of China (11771210), Foundations of Education Department of Hubei Province (B2020151, 2020628) and University Natural Science Foundation of Anhui Province (KJ2020ZD008).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, M., Zhou, G. Improved convergence results of an efficient Levenberg–Marquardt method for nonlinear equations. J. Appl. Math. Comput. 68, 3655–3671 (2022). https://doi.org/10.1007/s12190-021-01599-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-021-01599-6

Keywords

Mathematics Subject Classification