Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Dynamics of a reaction–diffusion dengue fever model with incubation periods and vertical transmission in heterogeneous environments

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

In this paper, we incorporate incubation periods of dengue virus, vertical transmission of dengue virus and climate factors into the spread of dengue fever, and propose a reaction–diffusion model with time delays of dengue fever in heterogeneous environments. We introduce the basic reproduction number \(R_0\) to describe the threshold dynamics of the model. Some sufficient conditions for the existence and attractivity of periodic solutions of the model are obtained. Our numerical simulation and analytical results show that small incubation periods and big probability of vertical transmission tend to enhance the spread of dengue fever in heterogeneous environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29

Similar content being viewed by others

References

  1. Dengue and severe. https://www.who.int/zh/news-room/fact-sheets/detail/dengue-and-severe-dengue

  2. Bhatt, S., Gething, P.W., Brady, O.J., et al.: The global distribution and burden of dengue. Nature 496, 504–507 (2013)

    Article  Google Scholar 

  3. Brady, O.J., Gething, P.W., Bhatt, S., et al.: Refining the global spatial limits of dengue virus transmission by evidence based consensus. PLoS Negl. Trop. Dis. 6, e1760 (2012)

    Article  Google Scholar 

  4. Esteva, L., Vargas, C.: Analysis of a dengue disease transmission model. Math. Biosci. 150, 131–151 (1998)

    Article  MATH  Google Scholar 

  5. Tewa, J.J., Dimi, J.L., Bowong, S.: Lyapunov functions for a dengue disease transmission model. Chaos Soliton Fract. 39, 936–941 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Esteva, L., Vargas, C.: A model for dengue disease with variable human population. J. Math. Biol. 38, 220–40 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  7. Esteva, L., Vargas, C.: Influence of vertical and mechanical transmission on the dynamics of dengue disease. Math. Biosci. 167, 51–64 (2000)

    Article  MATH  Google Scholar 

  8. Gómez, M.C., Yang, H.M.: Mathematical model of the immune response to dengue virus. J. Appl. Math. Comput. 63, 455–478 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chye, J.K., Lim, C.T., Ng, K.B., et al.: Vertical transmission of dengue. Clin. Infect. Dis. 25, 1374–1377 (1997)

    Article  Google Scholar 

  10. Lucille, A., Myrielle, D.R., Oliviaó, O.: Vertical transmission of dengue virus in the peripartum period and viral Kinetics in newborns and breast milk: new data. J. Pediat. Inf. Dis. Soc. 6, 324–331 (2017)

    Google Scholar 

  11. Everhard, S., Duvernois, J.P., Nacher, M., et al.: Estimating the risk of vertical transmission of dengue: a prospective study. Am. J. Trop. Med. Hyg. 98, 1826–1832 (2018)

    Article  Google Scholar 

  12. Adams, B., Boots, M.: How important is vertical transmission in mosquitoes for the persistence of dengue? Insights from a mathematical model. Epidemics 2, 1–10 (2010)

    Article  Google Scholar 

  13. Buckner, E.A., Alto, B.W., Lounibos, L.P.: Vertical transmission of key west dengue-1 virus by Aedes aegypti and Aedes albopictus (Diptera:culicidae) mosquitoes from Florida. J. Med. Entomol. 50, 1291–1297 (2013)

    Article  Google Scholar 

  14. Zou, L., Chen, J., Feng, X.M., et al.: Analysis of a dengue model with vertical transmission and application to the 2014 dengue outbreak in Guangdong Province, China. B. Math. Biol. 80, 2633–2651 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  15. Favier, C., Degallier, N., Rosa-Freitas, M.G., et al.: Early determination of the reproductive number for vector-borne diseases: the case of dengue in Brazil. Trop. Med. Int. Health 11, 332–340 (2006)

    Article  Google Scholar 

  16. Guzman, M.G., Gubler, D.J., Izquierdo, A., et al.: Dengue infection. Nat. Rev. Dis. Primers 2, 1–25 (2016)

    Article  Google Scholar 

  17. Halstead, S.B.: Dengue. Lancet 370, 1644–1652 (2007)

    Article  Google Scholar 

  18. Hwang, T.W., Wang, F.B.: Dynamics of a dengue fever transmission model with crowding effect in human population and spatial variation. Discrete Contin. Dyn. B. 18, 147–161 (2013)

    MathSciNet  MATH  Google Scholar 

  19. Lin, H., Wang, F.B.: On a reaction–diffusion system modeling the dengue transmission with nonlocal infections and crowding effects. Appl. Math. Comput. 248, 184–194 (2014)

    MathSciNet  MATH  Google Scholar 

  20. Wu, C.Q., Wong, P.J.Y.: Dengue transmission: mathematical model with discrete time delays and estimation of the reproduction number. J. Biol. Dyn. 13, 1–25 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  21. Chen, S.C., Hsieh, M.H.: Modeling the transmission dynamics of dengue fever: implications of temperature effects. Sci. Total Environ. 431, 385–391 (2012)

    Article  Google Scholar 

  22. Lambrechts, L., Paaijmans, K.P., Fansiri, T., et al.: Impact of daily temperature fluctuations on dengue virus transmission by Aedes aegypti. Proc. Natl. Acad. Sci. USA 108, 7460–7465 (2011)

    Article  Google Scholar 

  23. Kriengsak, L.: Epidemiological trends of dengue disease in Thailand (2000–2011): a systematic literature review. PLoS Negl. Trop. Dis. 8, e3241 (2014)

    Article  Google Scholar 

  24. Wang, W.D., Zhao, X.-Q.: A nonlocal and time-delayed reaction–diffusion model of dengue transmission. SIAM J. Appl. Math. 71, 147–168 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  25. Vaidya, N.K., Li, X., Wang, F.B.: Impact of spatial heterogenous temperature on the dynamics of dengue epidemics. Discrete Contin. Dyn. B. 24, 321–349 (2019)

    MATH  Google Scholar 

  26. Peng, R., Zhao, X.-Q.: A reaction–diffusion SIS epidemic model in a time-periodic environment. Nonlinearity 25, 1451–1471 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  27. Zhang, L., Wang, Z.C.: A time-periodic reaction–diffusion epidemic model with infection period. Z. Angew. Math. Phys. 67, 117 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  28. Zhang, L., Wang, S.M.: A time-periodic and reaction–diffusion Dengue fever model with extrinsic incubation period and crowding effects. Nonlinear Anal. Real. 51, 102988 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  29. Liang, X., Zhang, L., Zhao, X.-Q.: Basic reproduction ratios for periodic abstract functional differential equations (with application to a spatial model for Lyme disease). J. Dyn. Differ. Equ. 31, 1247–1278 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  30. Yang, T.H., Zhang, L.: Remarks on basic reproduction ratios for periodic abstract functional differential equations. Discrete Contin. Dyn. B 24, 6771–6782 (2019)

    MathSciNet  MATH  Google Scholar 

  31. Thieme, H.R.: Spectral bound and reproduction number for infinite-dimensional population structure and time heterogeneity. SIAM J. Appl. Math. 70, 188–211 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  32. Zhao, X.-Q.: Basic reproduction ratios for periodic compartmental models with time delay. J. Dyn. Differ. Equ. 29, 67–82 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  33. Pao, C.V.: Periodic solutions of parabolic systems with time delays. J. Math. Anal. Appl. 251, 251–263 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  34. Pao, C.V.: Stability and attractivity of periodic solutions of parabolic systems with time delays. J. Math. Anal. Appl. 304, 423–450 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  35. Ye, Q.X., Li, Z.Y., Wang, M.X., et al.: Introduction to the Reaction–Diffusion Equation, 2nd edn. Science Press, Beijing (2011)

    Google Scholar 

  36. Liu, Y.D., Li, Z.Y., Ye, Q.X.: The existence, uniqueness and stability of positive periodic solution for periodic reaction–diffusion equation system. Acta Math. Appl. Sin. 17, 1–13 (2001)

    Article  MATH  Google Scholar 

  37. Zhao, X.-Q.: Dynamical Systems in Population Biology, 3rd edn. Springer, Cham (2017)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

We are grateful to the reviewers and editors for their constructive comments, which gave the manuscript an opportunity to be further refined. The work is supported by National Natural Science Foundation of China under Grant 11971013. The work is also sponsored by Foundation of Graduate Innovation Center in NUAA under Grant Kfjj20190802.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongyong Zhao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Zhao, H. Dynamics of a reaction–diffusion dengue fever model with incubation periods and vertical transmission in heterogeneous environments. J. Appl. Math. Comput. 68, 3673–3703 (2022). https://doi.org/10.1007/s12190-021-01676-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-021-01676-w

Keywords

Mathematics Subject Classification