Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

A modified stochastic quasi-Newton algorithm for summing functions problem in machine learning

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

In this paper, a new stochastic quasi-Newton method (SQN) is proposed which has a different approximation of the Hessian inverse matrix \(H_k\). The modified quasi-Newton Broyden–Fletcher–Goldfarb–Shanno (BFGS) formula which has a better approximation to Hessian matrix has not only the gradient variation but also the function value. Because of the special nature of the sum function, the mini-batch setting is built in the algorithm, and less compution cost can be guaranteed. The number of iterations reduce to at most \(O(\varepsilon ^{-\frac{1}{1-\beta }})\). The convergence analysis is established in this paper. The numerical experiments show that this algorithm is competitive to other algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bottou, L.: Large-scale machine learning with stochastic gradient descent. In: Proceedings of COMPSTAT’, pp. 177–186 (2010)

  2. Byrd, R.H., Hansen, S.L., Nocedal, J., et al.: A stochastic quasi-Newton method for large-scale optimization. SIAM J. Optim. 26, 1008–1031 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cotter, A., Shamir, O., Srebro, N., Sridharan, K.: Better mini-batch algorithms via accelerated gradient methods. In: Proceedings of the Advances in Neural Information Processing Systems, pp. 1647–1655 (2011)

  4. Durrett, R.: Probability: Theory and Examples. Cambridge University Press, London (2010)

    Book  MATH  Google Scholar 

  5. Fercoq, O., RichtSrik, P.: Accelerated, parallel, and proximal coordinate descent. SIAM J. Optim. 25, 1997–2023 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM J. Optim. 23, 2341–2368 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Hassan, B., Mohammed, T.: A new variants of quasi-newton equation based on the quadratic function for unconstrained optimization. Indones. J. Electr. Eng. Comput. Sci. 2, 701–708 (2020)

    Google Scholar 

  8. Lan, G.: An optimal method for stochastic convex optimization. Technical report, Georgia Institute of Technology (2009)

  9. Li, M., Zhang, T., Chen, Y., et al.: Efficient mini-batch training for stochastic optimization. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 661–670 (2014)

  10. Mason, L., Baxter, J., Bartlett, P., Frean, M.: Boosting algorithms as gradient descent in function space. Adv. Neural Inf. Process. Syst. 12, 512–518 (1999)

    Google Scholar 

  11. Mokhtari, A., Eisen, M., Ribeiro, A.: IQN: An incremental quasi-Newton method with local superlinear convergence rate. SIAM J. Optim. 28, 1670–1698 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  12. Nemirovski, A., Juditsky, A., Lan, G., Shapiro, A.: Robust stochastic approximation approach to stochastic programming. SIAM J. Optim. 19(4), 1574–1609 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Powell, M.J.D.: Some global convergence properties of a variable metric algorithm for minimization without exact line searches. In: Cottle, R.W., Lemke, C.E. (eds.) Nonlinear Programming, Philadelphia (1976)

  14. Robbins, H., Monro, S.: A stochastic approximation method. Ann. Math. Stat. 22, 400–407 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  15. Schmidt, M., Roux, N., Bach, F.: Minimizing finite sums with the stochastic average gr1adient. Math. Program. 162, 83–112 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  16. Shang, F., Zhou, K., Liu, H., et al.: VR-SGD: a simple stochastic variance reduction method for machine learning. IEEE Trans. Knowl. Data Eng. 32, 188–202 (2018)

    Article  Google Scholar 

  17. Wang, X., Ma, S., Goldfarb, D., Liu, W.: Stochastic quasi-Newton methods for nonconvex stochastic optimization. SIAM J. Optim. 27, 927–956 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  18. Wei, Z., Yu, G., Yuan, G., et al.: The superlinear convergence of a modified BFGS-type method for unconstrained optimization. Comput. Optim. Appl. 29, 315–332 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  19. Wei, Z., Yu, G., Yuan, G., Lian, Z.: The superlinear convergence of a modified BFGS-type method for unconstrained optimization. Comput. Optim. Appl. 29, 315–332 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  20. Yang, Z., Wang, C., Zang, Y., et al.: Mini-batch algorithms with Barzilai–Borwein update step. Neurocomputing 314, 177–185 (2018)

    Article  Google Scholar 

  21. Yuan, G., Wei, Z.: Convergence analysis of a modified BFGS method on convex minimizations. Comput. Optim. Appl. 47, 237–255 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. Yuan, G., Zhou, Y., Wang, L., et al.: Stochastic bigger subspace algorithms for nonconvex stochastic optimization. IEEE Access 9, 119818–119829 (2021)

    Article  Google Scholar 

  23. Zhang, J.Z., Deng, N.Y., Chen, L.H.: New quasi-Newton equation and related methods for unconstrained optimization. J. Optim. Theory Appl. 102, 147–167 (1999)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haishan Feng.

Ethics declarations

Conflict of interest

The authors declare to have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supported by the Special Funds for Local Science and Technology Development Guided by the Central Government (No. ZY20198003), the High Level Innovation Teams and Excellent Scholars Program in Guangxi institutions of higher education (Grant No. [2019]52), the Guangxi Natural Science Key Fund (No. 2017GXNSFDA198046), and the National Natural Science Foundation of China (Grant No. 11661009)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Feng, H. A modified stochastic quasi-Newton algorithm for summing functions problem in machine learning. J. Appl. Math. Comput. 69, 1491–1506 (2023). https://doi.org/10.1007/s12190-022-01800-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-022-01800-4

Keywords

Mathematics Subject Classification