Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Postprocessing technique of the discontinuous Galerkin method for solving delay differential equations

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

We introduce an innovative postprocessing technique aimed at refining the accuracy of the discontinuous Galerkin method for solving linear delay differential equations (DDEs) with vanishing delays. The fundamental idea behind this postprocessing technique is to enhance the discontinuous Galerkin solution of degree k by incorporating a generalized Jacobi polynomial of degree \(k+1\). We demonstrate that this postprocessing step enhances convergence by one order under the \(L^\infty \)-norm. Moreover, we apply this technique to both nonlinear DDEs with vanishing delays and linear DDEs with non-vanishing delays. We further validated the theoretical results through a series of numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amirali, I.: Stability properties for the delay integro-differential equation. GAU J. Sci. 36, 862–868 (2023)

    Google Scholar 

  2. Amirali, I., Acar, H.: A novel approach for the stability inequalities for high-order Volterra delay integro-differential equation. J. Appl. Math. Comput. 69, 1057–1069 (2023)

    Article  MathSciNet  Google Scholar 

  3. Amirali, I., Acar, H.: Stability inequalities and numerical solution for neutral Volterra delay integro-differential equation. J. Comput. Appl. Math. 436, 115343 (2024)

    Article  MathSciNet  Google Scholar 

  4. Amiraliyeva, I.G., Erdogan, F., Amiraliyev, G.M.: A uniform numerical method for dealing with a singularly perturbed delay initial value problem. Appl. Math. Lett. 23, 1221–1225 (2010)

    Article  MathSciNet  Google Scholar 

  5. Arino, O., Hbid, M.L., Ait Dads, E.: Delay Differential Equations and Applications. NATO Sciences Series, Springer, Berlin (2006)

    Book  Google Scholar 

  6. Bellen, A.: One-step collocation for delay differential equations. J. Comput. Appl. Math. 10, 275–283 (1984)

    Article  MathSciNet  Google Scholar 

  7. Bellen, A., Zennaro, M.: Numerical solution of delay differential equations by uniform corrections to an implicit Runge-Kutta method. Numer. Math. 47, 301–316 (1985)

    Article  MathSciNet  Google Scholar 

  8. Bellen, A., Zennaro, M.: Numerical Methods for Delay Differential Equations. Oxford University Press, Oxford (2003)

    Book  Google Scholar 

  9. Brunner, H., Huang, Q., Xie, H.: Discontinuous Galerkin methods for delay differential equations of pantograph type. SIAM J. Numer. Anal. 48, 1944–1967 (2010)

    Article  MathSciNet  Google Scholar 

  10. Brunner, H., Liang, H.: Stability of collocation methods for delay differential equations with vanishing delays. BIT 50, 693–711 (2010)

    Article  MathSciNet  Google Scholar 

  11. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978)

    Google Scholar 

  12. Deng, K., Xiong, Z.G., Huang, Y.Q.: The Galerkin continuous finite element method for delay differential equation with a variable term. Appl. Math. Comput. 186, 1488–1496 (2007)

    MathSciNet  Google Scholar 

  13. Huang, C.M., Fu, H.Y., Li, S.F., Chen, G.N.: Stability analysis of Runge-Kutta methods for non-linear delay differential equations. BIT 39, 270–280 (1999)

    Article  MathSciNet  Google Scholar 

  14. Huang, Q.M., Jiang, K., Xu, X.X.: Postprocessing of continuous Galerkin solutions for delay differential equations with nonlinear vanishing delay. Int. J. Numer. Anal. Model. 16, 718–730 (2019)

    MathSciNet  Google Scholar 

  15. Huang, Q.M., Xie, H.H., Brunner, H.: Superconvergence of discontinuous Galerkin solutions for delay differential equations of pantograph type. SIAM J. Sci. Comput. 33, 2664–2684 (2011)

    Article  MathSciNet  Google Scholar 

  16. Huang, Q.M., Xie, H.H., Brunner, H.: The \(hp\) discontinuous Galerkin method for delay differential equations with nonlinear vanishing delay. SIAM J. Sci. Comput. 35, A1604–A1620 (2013)

    Article  MathSciNet  Google Scholar 

  17. Huang, Q.M., Xu, X.X., Brunner, H.: Continuous Galerkin methods on quasi-geometric meshes for delay differential equations of pantograph type. Discrete Contin. Dyn. Syst. 36, 5423–5443 (2016)

    Article  MathSciNet  Google Scholar 

  18. Kuang, Y.: Delay Differential Equations with Applications in Population Dynamics. Academic Press, Boston (1993)

    Google Scholar 

  19. Kudu, M., Amirali, I., Amiraliyev, G.M.: A finite-difference method for a singularly perturbed delay integro-differential equation. J. Comput. Appl. Math. 308, 379–390 (2016)

    Article  MathSciNet  Google Scholar 

  20. Li, D.F., Zhang, C.J.: Superconvergence of a discontinuous Galerkin Method for first-order linear delay differential equations. J. Comput. Math. 29, 574–588 (2011)

    Article  MathSciNet  Google Scholar 

  21. Li, D.F., Zhang, C.J.: \(L^\infty \) error estimates of discontinuous Galerkin methods for delay differential equations. Appl. Numer. Math. 82, 1–10 (2014)

    Article  MathSciNet  Google Scholar 

  22. Maset, S.: Stability of Runge-Kutta methods for linear delay differential equations. Numer. Math. 87, 355–371 (2000)

    Article  MathSciNet  Google Scholar 

  23. Meng, T.T., Yi, L.J.: An \(h\)-\(p\) version of the continuous Petrov-Galerkin method for nonlinear delay differential equations. J. Sci. Comput. 74, 1091–1114 (2018)

    Article  MathSciNet  Google Scholar 

  24. Meng, T.T., Yi, L.J.: An \(h\)-\(p\) version of the Chebyshev spectral collocation method for nonlinear delay differential equations, Numer. Methods Partial. Differ. Equ. 35, 664–680 (2018)

    Google Scholar 

  25. Mitsui, T., Hu, G.D.: Numerical Analysis of Ordinary and Delay Differential Equations. Springer, Singapore (2023)

    Book  Google Scholar 

  26. Schötzau, D., Schwab, C.: An \(hp\) a priori error analysis of the DG time-stepping method for initial value problems. Calcolo. 37, 207–232 (2000)

    Article  MathSciNet  Google Scholar 

  27. Shen, J., Tang, T., Wang, L.L.: Spectral Methods: Algorithms, Analysis and Applications, Springer Series in Computational Mathematics, vol. 41. Springer, Heidelberg (2011)

    Google Scholar 

  28. Smith, H.: An Introduction to Delay Differential Equations with Applications to the Life Sciences. Springer, New York (2011)

    Book  Google Scholar 

  29. Takama, N., Muroya, Y., Ishiwata, E.: On the attainable order of collocation methods for delay differential equations with proportional delay. BIT 40, 374–394 (2000)

    Article  MathSciNet  Google Scholar 

  30. Thomée, V.: Galerkin Finite Element Methods for Parabolic Problems, Springer Series in Computational Mathematics, vol. 25. Springer-Verlag, Berlin (2006)

    Google Scholar 

  31. Wei, Y.C., Sun, T., Yi, L.J.: An \(hp\)-version of the discontinuous Galerkin time-stepping method for nonlinear second-order delay differential equations with vanishing delays. J. Comput. Appl. Math. 364, 112348 (2020)

    Article  MathSciNet  Google Scholar 

  32. Xie, J.H., Yi, L.J.: An \(h\)-\(p\) version of the continuous Petrov-Galerkin time stepping method for nonlinear second-order delay differential equations. Appl. Numer. Math. 143, 1–19 (2019)

    Article  MathSciNet  Google Scholar 

  33. Xu, X.X., Huang, Q.M.: Superconvergence of discontinuous Galerkin methods for nonlinear delay differential equations with vanishing delay. J. Comput. Appl. Math. 348, 314–327 (2019)

    Article  MathSciNet  Google Scholar 

  34. Xu, X.X., Huang, Q.M., Chen, H.T.: Local superconvergence of continuous Galerkin solutions for delay differential equations of pantograph type. J. Comput. Math. 34, 186–199 (2016)

    Article  MathSciNet  Google Scholar 

  35. Yi, L.J., Zhang, M.Z., Mao, X.Y.: Superconvergent postprocessing of the discontinuous Galerkin time stepping method for nonlinear Volterra integro-differential equations. J. Comput. Appl. Math. 427, 115140 (2023)

    Article  MathSciNet  Google Scholar 

  36. Zhang, M.Z., Mao, X.Y., Yi, L.J.: Superconvergence and postprocessing of the continuous Galerkin method for nonlinear Volterra integro-differential equations. ESAIM Math. Model. Numer. Anal. 57, 671–691 (2023)

    Article  MathSciNet  Google Scholar 

  37. Zhang, M.Z., Yi, L.J.: Superconvergent postprocessing of the continuous Galerkin time stepping method for nonlinear initial value problems with application to parabolic problems. J. Sci. Comput. 94, 31 (2023)

    Article  MathSciNet  Google Scholar 

  38. Zhang, M.Z., Yi, L.J.: Postprocessing techniques of high-order Galerkin approximations to nonlinear second-order initial value problems with applications to wave equations, Commun. Comput. Phys. 35, 816–858 (2024)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lijun Yi.

Ethics declarations

Conflict of interest

The authors declare that they have no Conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

L. Yi: The work is supported by the National NSF of China (Grant Nos. 12171322, 11771298 and 12271366) and the NSF of Shanghai (Grant Nos. 21ZR1447200 and 22ZR1445500).

Some proofs

Some proofs

1.1 Proof of Lemma 2.1

Proof

Since the \(L^\infty \)-error estimate (2.4) has been established in [16, Corollary 3.4], our task is now reduced to verifying the \(L^2\)- and \(H^1\)-error estimates.

Step 1. We will show the \(L^2\)-error estimate in (2.3). Utilizing (1.1) and (2.2), it follows that

$$\begin{aligned} \int _{I_{n}}e'\varphi dt+[e]_{n-1}\varphi ^+_{n-1}=\int _{I_{n}}(ae+be(\theta ))\varphi dt,\quad \forall \varphi \in P_{k}(I_{n}). \end{aligned}$$
(A.1)

Since \(e = \xi + \eta \), using (A.1), (2.12), integration by parts, and the fact \(\xi ^-_0=0\), we derive

$$\begin{aligned} \int _{I_n}\xi '\varphi dt+[\xi ]_{n-1}\varphi _{n-1}^+= \int _{I_n}(ae+be(\theta ))\varphi dt, \quad \forall \displaystyle \varphi \in P_k(I_n). \end{aligned}$$
(A.2)

Further application of integration by parts yields

$$\begin{aligned} \xi _n^-\varphi _n^--\int _{I_n}\xi \varphi ^{\prime }dt=\xi _{n-1}^-\varphi _{n-1}^++\int _{I_n}(ae+be(\theta ))\varphi dt, \quad \forall \displaystyle \varphi \in P_k(I_n). \end{aligned}$$
(A.3)

By selecting \(\varphi = \xi \) in (A.2), we obtain

$$\begin{aligned} \begin{aligned} \frac{1}{2}\left( |\xi _n^-|^2 +|\xi _{n-1}^+|^2\right)&=\xi _{n-1}^-\xi _{n-1}^++\int _{I_n}(ae+be(\theta ))\xi dt\\&\le \frac{1}{2}|\xi _{n-1}^-|^2+\frac{1}{2}|\xi _{n-1}^+|^2+C\left( \Vert e\Vert _{L^2(I_n)}^2+\Vert \xi \Vert _{L^2(I_n)}^2\right) \\&\quad +C\left( \Vert e(\theta )\Vert _{L^2(I_n)}^2+\Vert \xi \Vert _{L^2(I_n)}^2\right) , \end{aligned} \end{aligned}$$

which implies

$$\begin{aligned} \begin{aligned} |\xi _n^-|^2&\le |\xi _{n-1}^-|^2+C\left( \Vert e\Vert _{L^2(I_n)}^2+\Vert \xi \Vert _{L^2(I_n)}^2\right) +C\left( \Vert e(\theta )\Vert _{L^2(I_n)}^2+\Vert \xi \Vert _{L^2(I_n)}^2\right) \\&\le |\xi _{n-1}^-|^2+C\Vert \eta \Vert _{L^2(I_n)}^2+C\Vert \xi \Vert _{L^2(I_n)}^2+C\Vert e(\theta )\Vert _{L^2(I_n)}^2. \end{aligned} \end{aligned}$$
(A.4)

Summing (A.4) over \( I_i\) for \(1\le i \le n\), then utilizing

$$\begin{aligned} \Vert e(\theta )\Vert _{L^2(0,t_n)}^2=\int _0^{t_n}|e(\theta )|^2dt\le \frac{1}{q_0}\int _0^{\theta (t_n)}|e(s)|^2ds\le \frac{1}{q_0}\Vert e\Vert _{L^2(0,t_n)}^2,\quad 1\le n \le N, \end{aligned}$$
(A.5)

we obtain

$$\begin{aligned} \begin{aligned} |\xi _n^-|^2\le C\big (\Vert \eta \Vert _{L^2(0,t_n)}^2+\Vert \xi \Vert _{L^2(0,t_n)}^2\big ). \end{aligned} \end{aligned}$$
(A.6)

For \(k=0\), we have \(\xi '=0\). Utilizing (A.6), we obtain

$$\begin{aligned} \Big (\int _{I_n}\xi dt\Big )^2=\Big (\int _{I_n}\xi _n^-dt\Big )^2=h_n^2|\xi _n^-|^2\le Ch_n^2\big (\Vert \xi \Vert _{L^2(0,t_n)}^2+\Vert \eta \Vert _{L^2(0,t_n)}^2\big ). \end{aligned}$$
(A.7)

For \(k>0\), selecting \(\varphi = t_{n-1}-t \) in (A.3), we obtain

$$\begin{aligned} \begin{aligned} \int _{I_n}\xi dt=h_n\xi _n^-+\int _{I_n}(ae+be(\theta )(t_{n-1}-t)dt. \end{aligned} \end{aligned}$$
(A.8)

Then, using (A.6) gives

$$\begin{aligned} \begin{aligned} \left( \int _{I_n}\xi dt\right) ^2&\le Ch_n^2|\xi _n^-|^2+C\Big (\int _{I_n}|e|\cdot |t_{n-1}-t|dt\Big )^2+C\Big (\int _{I_n}|e(\theta )|\cdot |t_{n-1}-t|dt\Big )^2\\&\le Ch_n^2\big (\Vert \xi \Vert _{L^2(0,t_n)}^2+\Vert \eta \Vert _{L^2(0,t_n)}^2\big )+Ch_n^3\Vert e\Vert _{L^2(I_n)}^2+Ch_n^3\Vert e\Vert _{L^2(0,t_n)}^2\\&\le Ch_n^2\big (\Vert \xi \Vert _{L^2(0,t_n)}^2+\Vert \eta \Vert _{L^2(0,t_n)}^2\big ). \end{aligned} \end{aligned}$$
(A.9)

Here, we have utilized the fact

$$\begin{aligned} \left\| e(\theta )\right\| _{L^2(I_n)}^2\le \int _0^{t_n}|e(\theta )|^2dt\le \frac{1}{q_0}\int _0^{\theta (t_n)}|e|^2ds\le \frac{1}{q_0}\Vert e\Vert _{L^2(0,t_n)}^2. \end{aligned}$$
(A.10)

Combining (A.7) and (A.9), we conclude

$$\begin{aligned} \Big (\int _{I_n}\xi (t)dt\Big )^2\le Ch_n^2\big (\Vert \xi \Vert _{L^2(0,t_n)}^2+\Vert \eta \Vert _{L^2(0,t_n)}^2\big ),\quad k\ge 0. \end{aligned}$$
(A.11)

For \(k>0\), selecting \(\varphi =\xi ^{\prime }(t)(t-t_{n-1})\) in (A.2) and then utilizing (A.10) and the Cauchy-Schwarz inequality, we have

$$\begin{aligned} \begin{aligned}&\int _{I_n}(t-t_{n-1})|\xi '|^2dt \le Ch_n^{\frac{1}{2}}\Vert e\Vert _{L^2(I_n)}\Big \{\int _{I_n}(t-t_{n-1})|\xi ^{\prime }|^2dt\Big \}^{\frac{1}{2}}\\&\quad +Ch_n^{\frac{1}{2}}\Vert e\Vert _{L^2(0,t_n)}\Big \{\int _{I_n}(t-t_{n-1})|\xi ^{\prime }|^2dt\Big \}^{\frac{1}{2}}, \end{aligned} \end{aligned}$$

and thus,

$$\begin{aligned} \begin{aligned} \int _{I_n}(t-t_{n-1})|\xi '|^2d\le Ch_n(\Vert \xi \Vert ^2_{L^2(0,t_n)}+\Vert \eta \Vert ^2_{L^2(0,t_n)}). \end{aligned} \end{aligned}$$
(A.12)

For \(k=0\), where \(\xi '=0\), (A.12) still holds.

Recalling the inequality (see [26, Lemma 2.4])

$$\begin{aligned} \int _{I_n}|\varphi |^2dt\le \frac{1}{h_n}\Big (\int _{I_n}\varphi (t)dt\Big )^2+\frac{1}{2}\int _{I_n}(t_n-t)(t-t_{n-1})|\varphi '|^2dt, \quad \forall \varphi \in P_k(I_n), \ k \ge 0. \end{aligned}$$
(A.13)

Then, using (A.11) and (A.12), we obtain

$$\begin{aligned} \begin{aligned} \Vert \xi \Vert _{L^{2}(I_{n})}^{2}&=\int _{I_{n}}|\xi |^{2}dt\le \frac{1}{h_{n}}\Big (\int _{I_{n}}\xi dt\Big )^{2}+\frac{1}{2}\int _{I_{n}}(t_n-t)(t-t_{n-1})|\xi '|^{2}dt\\&\le Ch_n\Vert \xi \Vert _{L^2(0,t_n)}^2+Ch_n\Vert \eta \Vert _{L^2(0,t_n)}^2\\&\le Ch_{n}\Vert \xi \Vert _{L^{2}(0,t_{n-1})}^{2}+Ch_{n}\Vert \xi \Vert _{L^{2}(I_{n})}^{2}+Ch_{n}\Vert \eta \Vert _{L^{2}(0,t_{n})}^{2}, \end{aligned} \end{aligned}$$

which implies that for \(h_n\) sufficiently small

$$\begin{aligned} \frac{\Vert \xi \Vert _{L^2(I_n)}^2}{h_n}\le C\Vert \eta \Vert _{L^2(0,t_n)}^2+C\sum _{i=1}^{n-1}h_i\frac{\Vert \xi \Vert _{L^2(I_i)}^2}{h_i}. \end{aligned}$$

Therefore, applying the discrete Gronwall inequality yields

$$\begin{aligned} \Vert \xi \Vert _{L^2(I_n)}^2\le Ch_n\Vert \eta \Vert _{L^2(0,t_n)}^2. \end{aligned}$$
(A.14)

Combining (2.18) and (A.14), we obtain

$$\begin{aligned} \begin{aligned} \Vert e\Vert _{L^{2}(I)}^{2}&\le 2\Vert \eta \Vert _{L^2(I)}^2+2\sum _{n=1}^N\Vert \xi \Vert _{L^2(I_n)}^2 \le C\Vert \eta \Vert _{L^2(I)}^2 \le Ch^{2k+2}\Vert u\Vert _{H^{k+1}(I)}^2. \end{aligned} \end{aligned}$$
(A.15)

This concludes the proof of the \(L^2\)-estimate in (2.3).

Step 2. In this step, we establish the \(H^1\)-error estimate in (2.3). Given that \(\xi |_{I_n} \in P_{k}(I_{n})\), we utilize the inverse inequality (see, e.g., [11])

$$\begin{aligned} \Vert \xi ^{\prime }\Vert _{L^{\infty }(I_{n})}\le Ch_{n}^{-\frac{1}{2}}\Vert \xi ^{\prime }\Vert _{L^{2}(I_{n})}, \end{aligned}$$
(A.16)

and the fact \(\Vert L_{n,k}\Vert _{L^{2}(I_{n})}=\left( \displaystyle \frac{h_n}{2k+1}\right) ^\frac{1}{2} \le C h_n^{\frac{1}{2}}\) to obtain

$$\begin{aligned} \left\| \xi '-(-1)^{k}\xi '(t_{n-1}^{+})L_{n,k}\right\| _{L^{2}(I_{n})}\le \Vert \xi '\Vert _{L^{2}(I_{n})}+ Ch_{n}^{-\frac{1}{2}}\Vert \xi ^{\prime }\Vert _{L^{2}(I_{n})}h_n^{\frac{1}{2}} \le C \Vert \xi '\Vert _{L^{2}(I_{n})}. \end{aligned}$$
(A.17)

Choosing \(\varphi =\xi ^{\prime }-(-1)^{k}\xi ^{\prime }(t_{n-1}^{+})L_{n,k}\) in (A.2) and utilizing (A.17) as well as the properties \(\varphi _{n-1}^+=0\), we arrive at

$$\begin{aligned} \Vert \xi ^{\prime }\Vert _{L^{2}(I_{n})}^{2}\le & {} C\left( \Vert e\Vert _{L^{2}(I_{n})}+\Vert e(\theta )\Vert _{L^{2}(I_{n})}\right) \left\| \xi '-(-1)^{k}\xi '(t_{n-1}^{+})L_{n,k}\right\| _{L^{2}(I_{n})}\\\le & {} C\left( \Vert e\Vert _{L^2(I_n)} + \Vert e(\theta )\Vert _{L^2(I_n)}\right) \Vert \xi '\Vert _{L^{2}(I_{n})}, \end{aligned}$$

which leads to

$$\begin{aligned} \Vert \xi '\Vert _{L^2(I_n)}\le C\Vert e\Vert _{L^2(I_n)}+C\Vert e(\theta )\Vert _{L^2(I_n)}. \end{aligned}$$
(A.18)

Squaring and summing (A.18) over \(I_n\) for \(1\le n \le N\), then utilizing (A.5), we have

$$\begin{aligned} \Vert \xi '\Vert _{L^2(I)}^2\le C\Vert e\Vert _{L^2(I)}^2+C\Vert e(\theta )\Vert _{L^2(I)}^2 \le C\Vert e\Vert _{L^2(I)}^2. \end{aligned}$$
(A.19)

Combining (A.19), (2.18), and (2.3), we obtain

$$\begin{aligned} \Vert e'\Vert ^2_{L^2(I)} \le C\left( \Vert \eta '\Vert ^2_{L^2(I)}+\Vert \xi '\Vert ^2_{L^2(I)}\right) \le C \left( \Vert \eta '\Vert ^2_{L^2(I)}+\Vert e\Vert ^2_{L^2(I)}\right) \le Ch^{2k}\Vert u\Vert ^2_{H^{k+1}(I)}, \end{aligned}$$

which along with (A.15) implies the desired \(H^1\)-estimate. \(\square \)

1.2 Proof of Lemma 2.2

Proof

We begin by constructing the following problem: seek v so that

$$\begin{aligned} \left\{ \begin{array}{ll} v'+av+\widetilde{b}v(\theta ^{-1}(t))=0,\quad t\in [t_0,t_n),\\ v(t_{n})=e(t_n^-) \end{array}\right. \end{aligned}$$
(A.20)

for \(1\le n\le N\), and \(\widetilde{b}\) is given as follows:

$$\begin{aligned} \widetilde{b}:=\left\{ \begin{aligned}&b(\theta ^{-1}(t))\left( \theta ^{-1}(t)\right) ',\quad t_0 \le t \le \theta (t_n),\\&\ 0,\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \theta (t_n)<t\le t_n. \end{aligned} \right. \end{aligned}$$

Here, the functions a, b, and \(\theta \) are given by (1.1).

Because of the potential discontinuity of \(\widetilde{b}\) at the points \(\theta (t_n)\), the derivative \(v'\) may also exhibit discontinuity at these points. We make the assumption that the functions a and b belong to \(C^k(I)\) such that v satisfies the inequality

$$\begin{aligned} |v(\theta (t_n))|+|v'(\theta (t_n))|+|v^{(i)}(t)|\le C|e_n^-| \end{aligned}$$
(A.21)

for \(i=0,1,...,k+1\), where \(t \in [0,\theta (t_n))\cup (\theta (t_n),t_n]\).

For convenience, let’s define

$$\begin{aligned} \rho _{n}:=\int _{I_{n}}\left( e'-ae-be(\theta )\right) vdt+[e]_{n-1}v_{n-1}^{+}. \end{aligned}$$
(A.22)

Utilizing the technique of integration by parts, yields

$$\begin{aligned} \begin{aligned} \rho _{n}&=\int _{I_{n}}e'vdt-\int _{I_{n}}aevdt-\int _{I_{n}}be(\theta )vdt+[e]_{n-1}v_{n-1}^{+} \\&=\left( e_{n}^{-} v_{n}^{-}-e_{n-1}^{+}v_{n-1}^{+}-\int _{I_{n}}v'edt\right) -\int _{I_{n}}aevdt -\int _{I_{n}}be(\theta )vdt+ [e]_{n-1}v_{n-1}^+ \\&=-\int _{I_{n}}\left( v'+av\right) edt-\int _{I_{n}}be(\theta )vdt +e_{n}^{-} v_{n}^{-}-e_{n-1}^{-}v_{n-1}^{+}. \end{aligned}\end{aligned}$$
(A.23)

By summing up (A.23) over \(I_i\), \(1 \le i \le n\), and utilizing (A.20), the initial condition \(e_0^-=u_0-U_0^-=0\), and the fact \(v\in H^1(0, t_n)\), we get

$$\begin{aligned} \sum _{i=1}^n\rho _i= & {} \displaystyle -\int _{0}^{t_{n}}\left( v'+av\right) edt-\int _{\theta (0)}^{\theta (t_n)}b(\theta ^{-1})ev(\theta ^{-1}) \left( \theta ^{-1}\right) 'dt +\displaystyle \sum _{i=1}^{n}(e_{i}^{-}v_{i}^{-}-e_{i-1}^{-}v_{i-1}^{+}) \nonumber \\= & {} \displaystyle -\int _{0}^{t_{n}}\left( v'+av\right) edt-\int _{0}^{\theta (t_n)}\widetilde{b}ev(\theta ^{-1})dt-\displaystyle \int _{\theta (t_n)}^{t_n}\widetilde{b}ev(\theta ^{-1})dt \nonumber \\{} & {} +\sum _{i=1}^{n}\left( e_{i}^{-}v_{i}^{-}-e_{i-1}^{-}v_{i-1}^{+})\right) \nonumber \\= & {} \displaystyle -\int _{0}^{t_n}(v'+av+\widetilde{b}v(\theta ^{-1}))edt+\sum _{i=1}^{n}\left( e_{i}^{-}v_{i}^{-}-e_{i-1}^{-}v_{i-1}^{+})\right) \nonumber \\= & {} \displaystyle \sum _{i=1}^{n}\left( e_{i}^{-}v(t_i)-e_{i-1}^{-}v(t_{i-1})\right) =e_n^-v(t_n) \nonumber \\= & {} \displaystyle |e_n^-|^2. \end{aligned}$$
(A.24)

Since \(e = \xi + \eta \) and using (2.18), (A.18), (A.10), and (2.3), we have

$$\begin{aligned} \begin{aligned} \Vert e'\Vert ^2_{L^2(I_{n})}&\le C\left( \Vert \eta '\Vert ^2_{L^2(I_{n})}+\Vert \xi '\Vert ^2_{L^2(I_{n})}\right) \le Ch_n^{2k}\Vert u\Vert ^2_{H^{k+1}(I_n)}\\&\quad +C\Vert e\Vert ^2_{L^2(I_n)}+C\Vert e(\theta (t))\Vert ^2_{L^2(I_n)}\\&\le Ch_n^{2k+1}\Vert u\Vert ^2_{W^{k+1,\infty }(I_n)}+C\Vert e\Vert ^2_{L^2(I)}\\&\le Ch^{2k+1}\Vert u\Vert ^2_{W^{k+1,\infty }(I)}. \end{aligned} \end{aligned}$$
(A.25)

Now, considering (A.22), (A.1), and employing (2.13), we find that

$$\begin{aligned} \begin{aligned} \sum _{i=1}^{n}\rho _{i}&=\sum _{i=1}^{n}\int _{I_{i}}(e'-ae-be(\theta ))(v-\hat{\pi }{^{k}_{I_{i}}}v)dt+\sum _{i=1}^{n}\int _{I_{i}}(e'-ae-be(\theta ))\hat{\pi }{^{k}_{I_{i}}}vdt\\&\quad +\sum _{i=1}^{n}[e]_{i-1}v_{i-1}^{+} \\&= \sum _{i=1}^{n}\int _{I_{i}}(e'-ae-be(\theta ))(v-\hat{\pi }{^{k}_{I_{i}}}v)dt+\sum _{i=1}^{n}[e]_{i-1}\left( v_{i-1}^{+}-(\hat{\pi }_{I_i}^{k}v)_{i-1}^{+}\right) \\&= \sum _{i=1}^{n}\int _{I_{i}}(e'-ae-be(\theta ))(v-\hat{\pi }{^{k}_{I_{i}}}v)dt, \end{aligned} \end{aligned}$$
(A.26)

where \(\hat{\pi }_{I_n}^kv \in P_k(I_n)\) denote the projection of v as defined by (2.13).

Let \(n^*\) be an integer such that \(\theta (t_n)\) falls within \([t_{n^*-1},t_{n^*+1}]\), where \(1\le n^*\le n-1\). By (A.26) and(A.24), we have

$$\begin{aligned} |e^-_n|^2:=A_1+A_2+A_3, \end{aligned}$$
(A.27)

with

$$\begin{aligned} A_1= \sum _{i=1}^{n^*-1}\int _{I_i}(e'-ae-be(\theta ))(v-\hat{\pi }{^{k}_{I_{i}}}v)dt, \\ A_2= \sum _{i=n^*}^{n^*+1}\int _{I_i}(e'-ae-be(\theta ))(v-\hat{\pi }{^{k}_{I_{i}}}v)dt, \\ A_3= \sum _{i=n^*+2}^{n}\int _{I_i}(e'-ae-be(\theta ))(v-\hat{\pi }{^{k}_{I_{i}}}v)dt. \end{aligned}$$

Applying the Cauchy-Schwarz inequality, (A.25), (2.3), and (2.20), we get

$$\begin{aligned} A_1\le & {} \sum _{i=1}^{n^*-1}\left\| e'-ae-be(\theta ))\right\| _{L^2(I_i)}\left\| v-\hat{\pi }_{I_i}^{k}v\right\| _{L^2(I_i)} \nonumber \\\le & {} C\sum _{i=1}^{n^*-1}\left( \Vert e'\Vert _{L^2(I_i)}+\Vert e\Vert _{L^2(I)}\right) h_i^{k+1}\Vert v\Vert _{H^{k+1}(I_i)} \nonumber \\\le & {} C\sum _{i=1}^{n^*-1}\left( h^{k+\frac{1}{2}}\Vert u\Vert _{W^{k+1,\infty }(I)}+h^{k+1}\Vert u\Vert _{W^{k+1,\infty }(I)}\right) h_i^{k+\frac{3}{2}}\Vert v\Vert _{W^{k+1,\infty }(I_i)}\nonumber \\\le & {} C\sum _{i=1}^{n^*-1}\left( h^{k+\frac{1}{2}}h_i^{k+\frac{3}{2}}+h^{k+1}h_{i}^{k+\frac{3}{2}}\right) \Vert u\Vert _{W^{k+1,\infty }(I)}\Vert v\Vert _{W^{k+1,\infty }(I_{i})} \nonumber \\\le & {} Ch^{2k+1}\Vert u\Vert _{W^{k+1,\infty }(I)}|e_n^-|. \end{aligned}$$
(A.28)

It’s worth noting that v may possess lower regularity on the intervals \(I_{j}\), \(j=n^{*},n^{*}+1\). Similar to the derivation of \(A_1\), we obtain

$$\begin{aligned} \begin{aligned} A_2&\le \sum _{i=n^*}^{n^*+1}\left\| e'-ae-be(\theta ))\right\| _{L^2(I_i)}\left\| v-\hat{\pi }_{I_i}^{k}v\right\| _{L^2(I_i)} \\&\le C\sum _{i=n^*}^{n^*+1}\left( \Vert e\Vert _{H^1(I_i)}+\Vert e\Vert _{L^2(I)}\right) h_i\Vert v\Vert _{H^{1}(I_i)} \\&\le C\sum _{i=n^*}^{n^*+1}\left( h^{k+\frac{1}{2}}\Vert u\Vert _{W^{k+1,\infty }(I)}+h^{k+1}\Vert u\Vert _{W^{k+1,\infty }(I)}\right) h_i^{\frac{3}{2}}\Vert v\Vert _{W^{1,\infty }(I_i)}\\&\le C\sum _{i=n^*}^{n^*+1}\left( h^{k+\frac{1}{2}}h_i^{\frac{3}{2}}+h^{k+1}h_{i}^{\frac{3}{2}}\right) \Vert u\Vert _{W^{k+1,\infty }(I)}\Vert v\Vert _{W^{1,\infty }(I_{i})}\\&\le Ch^{k+2}\Vert u\Vert _{W^{k+1,\infty }(I)}|e_n^-|. \end{aligned} \end{aligned}$$
(A.29)

Moreover, we can estimate \(A_3\) in a similar manner to \(A_1\), obtaining

$$\begin{aligned} A_3\le Ch^{2k+1}\Vert u\Vert _{W^{k+1,\infty }(I)}|e_n^-|. \end{aligned}$$
(A.30)

Finally, by combining (A.27)-(A.30), we derive the desired estimate

$$\begin{aligned} |e_n^-|\le Ch^{\min \{2k+1, k+2\}}\Vert u\Vert _{W^{k+1,\infty }(I)}, \end{aligned}$$

which implies (2.5). \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tu, Q., Li, Z. & Yi, L. Postprocessing technique of the discontinuous Galerkin method for solving delay differential equations. J. Appl. Math. Comput. 70, 3603–3630 (2024). https://doi.org/10.1007/s12190-024-02114-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-024-02114-3

Keywords

Mathematics Subject Classification