Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Numerical solution for third order singularly perturbed turning point problems with integral boundary condition

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

In this paper, a third-order singularly perturbed differential equation with integral boundary condition (IBC) is considered. The problem is reduced into system of differential equation, one compromises initial value problem and another one is second order singularly perturbed differential equation with integral boundary condition. Due to the presence of turning point at \(r=0,\) the problem exhibit boundary layer at \(r=-1\) and \(r=1.\) To tackle this type of problem, a thorough study is required to obtain a priori estimations on the solution and its derivatives of the considered problem. We present a numerical technique adopting an upwind finite difference scheme on a dense piece-wise uniform mesh at the boundary layers. The proposed method is almost first-order convergent. Some numerical examples are provided to validate the theoretical findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Miller, J.J.H., O’Riordan, E., Shishkin, G.I.: Fitted numerical methods for singular perturbation problems. World Sci., Singapore (2012)

    MATH  Google Scholar 

  2. Farrell, P.A., Hegarty, A.F., Miller, J.J.H., O’Riordan, E., Shishkin, G.I.: Robust computational techniques for boundary layers. Chapman and Hall/CRC Press, Florida (2000)

    MATH  Google Scholar 

  3. Sayevand, K.: Mittag-Leffler string stability of singularly perturbed stochastic systems within local fractal space. Math. Model. Anal. 24(3), 311–334 (2019)

    MathSciNet  MATH  Google Scholar 

  4. Sayevand, K., Pichaghchi, K.: Efficient algorithms for analyzing the singularly perturbed boundary value problems of fractional order. Commun. Nonlinear Sci. Numer. Simul. 57, 136–168 (2018)

    MathSciNet  MATH  Google Scholar 

  5. Sayevand, K., Pichaghchi, K.: A novel operational matrix method for solving singularly perturbed boundary value problems of fractional multi-order. Int. J. Comput. Math. 95(4), 767–796 (2018)

    MathSciNet  MATH  Google Scholar 

  6. Bender, C.M., Orszag, S.A.: Advanced mathematical methods for scientists and engineers I: Asymptotic methods and perturbation theory. Springer, New York (2013)

    MATH  Google Scholar 

  7. Ascher, U.M., Mattheij, R.M., Russell, R.D.: Numerical solution of boundary value problems for ordinary differential equations. SIAM, Philadelphia (1995)

    MATH  Google Scholar 

  8. Allen, S.M., Cahn, J.W.: A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metall. 27(6), 1085–1095 (1979)

    MATH  Google Scholar 

  9. Wasow, W.: Linear turning point theory. Springer, New York (2012)

    MATH  Google Scholar 

  10. Howes, F.: The asymptotic solution of a class of third-order boundary value problems arising in the theory of thin film flows. SIAM J. Appl. Math. 43(5), 993–1004 (1983)

    MathSciNet  MATH  Google Scholar 

  11. Sharma, K.K., Rai, P., Patidar, K.C.: A review on singularly perturbed differential equations with turning points and interior layers. Appl. Math. Comput. 219(22), 10575–10609 (2013)

    MathSciNet  MATH  Google Scholar 

  12. Wang, X., Wang, N.: Singular perturbation boundary and interior layers problems with multiple turning points. Bound. Value Probl. 2024(1), 42 (2024)

    MathSciNet  MATH  Google Scholar 

  13. Kumari, P., Kumar, D., Ramos Calle, H.: Parameter independent scheme for singularly perturbed problems including a boundary turning point of multiplicity \(\ge \) 1. J. Appl. Anal. Comput. 13(3), 1304–1320 (2023)

    MathSciNet  MATH  Google Scholar 

  14. Gelu, F.W., Duressa, G.F.: Parameter-uniform numerical scheme for singularly perturbed parabolic convection-diffusion robin type problems with a boundary turning point. Results Appl. Math. 15, 100324 (2022)

    MathSciNet  MATH  Google Scholar 

  15. Munyakazi, J.B., Patidar, K.C., Sayi, M.T.: A fitted numerical method for parabolic turning point singularly perturbed problems with an interior layer. Numer. Methods Partial Differ. Equ. 35(6), 2407–2422 (2019)

    MathSciNet  MATH  Google Scholar 

  16. Yadav, S., Rai, P.: A higher order numerical scheme for singularly perturbed parabolic turning point problems exhibiting twin boundary layers. Appl. Math. Comput. 376, 125095 (2020)

    MathSciNet  MATH  Google Scholar 

  17. Kumar, D.: A parameter-uniform method for singularly perturbed turning point problems exhibiting interior or twin boundary layers. Int. J. Comput. Math. 96(5), 865–882 (2019)

    MathSciNet  MATH  Google Scholar 

  18. Jayalakshmi, G.J., Tamilselvan, A.: Second order difference scheme for singularly perturbed boundary turning point problems. J. Math. Model. 9(4), 633–643 (2021)

    MathSciNet  MATH  Google Scholar 

  19. Geetha, N., Tamilselvan, A., Subburayan, V.: Parameter uniform numerical method for third order singularly perturbed turning point problems exhibiting boundary layers. Int. J. Appl. Comput. Math. 2, 349–364 (2016)

    MathSciNet  MATH  Google Scholar 

  20. Geetha, N., Tamilselvan, A.: Variable mesh spline approximation method for solving second order singularly perturbed turning point problems with robin boundary conditions. Int. J. Appl. Comput. Math. 3, 891–903 (2017)

    MathSciNet  MATH  Google Scholar 

  21. Geetha, N., Tamilselvan, A.: Parameter uniform numerical method for fourth order singularly perturbed turning point problems exhibiting boundary layers. Ain Shams Eng. J. 9(4), 845–853 (2018)

    MATH  Google Scholar 

  22. Debela, H.G., Duressa, G.F.: Accelerated exponentially fitted operator method for singularly perturbed problems with integral boundary condition. Int. J. Differ. Equ. 2020, 9268181 (2020)

    MathSciNet  MATH  Google Scholar 

  23. Durmaz, M.E., Amirali, I., Amiraliyev, G.M.: An efficient numerical method for a singularly perturbed fredholm integro-differential equation with integral boundary condition. J. Appl. Math. Comput. (2022)

  24. Kudu, M.: A parameter uniform difference scheme for the parameterized singularly perturbed problem with integral boundary condition. Adv. Differ. Equ. 2018, 170 (2018)

    MathSciNet  MATH  Google Scholar 

  25. Kudu, M., Amirali, I., Amiraliyev, G.M.: A second order accurate method for a parameterized singularly perturbed problem with integral boundary condition. J. Comput. Appl. Math. 404, 113894 (2022)

    MathSciNet  MATH  Google Scholar 

  26. Raja, V., Tamilselvan, A.: Numerical method for a system of singularly perturbed convection diffusion equations with integral boundary conditions. Commun. Korean Math. Soc. 34(3), 1015–1027 (2019)

    MathSciNet  MATH  Google Scholar 

  27. Raja, V., Tamilselvan, A.: Fitted finite difference method for third order singularly perturbed convection diffusion equations with integral boundary condition. Arab J. Math. Sci. 25(2), 231–242 (2019)

    MathSciNet  MATH  Google Scholar 

  28. Sekar, E., Tamilselvan, A.: Finite difference scheme for third order singularly perturbed delay differential equation of convection diffusion type with integral boundary condition. J. Appl. Math. Comput. 61, 73–86 (2019)

    MathSciNet  MATH  Google Scholar 

  29. Sekar, E.: Second order singularly perturbed delay differential equations with non-local boundary condition. J. Comput. Appl. Math. 417, 114498 (2023)

    MathSciNet  MATH  Google Scholar 

  30. Cen, Z., Liu, L.-B., Xu, A.: A second-order adaptive grid method for a nonlinear singularly perturbed problem with an integral boundary condition. J. Comput. Appl. Math. 385, 113205 (2021)

    MathSciNet  MATH  Google Scholar 

  31. Cakir, M., Amıraliyev, G.M.: A finite difference method for the singularly perturbed problem with nonlocal boundary condition. Appl. Math. Comput. 160(2005), 539–549 (2005)

    MathSciNet  MATH  Google Scholar 

  32. Cakir, M., Amıraliyev, G.M.: Numerical solution of a singularly perturbed three-point boundary value problem. Int. J. Comput. Math. 84(10), 1465–1481 (2007)

    MathSciNet  MATH  Google Scholar 

  33. Wondimu, G.M., Dinka, T.G., Woldaregay, M., Duressa, G.F.: Fitted mesh numerical scheme for singularly perturbed delay reaction diffusion problem with integral boundary condition. Comput. Methods Differ. Equ. (2023)

  34. Debela, H.G., Duressa, G.F.: Fitted operator finite difference method for singularly perturbed differential equations with integral boundary condition. Kragujevac J. Math. 47, 637–651 (2023)

    MathSciNet  MATH  Google Scholar 

  35. Boucherif, A., Bouguima, S.M., Benbouziane, Z., Al-Malki, N.: Third order problems with nonlocal conditions of integral type. Bound. Value Probl. 2014, 1–10 (2014)

    MathSciNet  MATH  Google Scholar 

  36. Boucherif, A., Bouguima, S.M., Al-Malki, N., Benbouziane, Z.: Third order differential equations with integral boundary conditions. Nonlinear Anal. 71(12), 1736–1743 (2009)

    MathSciNet  MATH  Google Scholar 

  37. Fu, D., Ding, W.: Existence of positive solutions of third-order boundary value problems with integral boundary conditions in Banach spaces. Adv. Differ. Equ. 2013, 1–12 (2013)

    MathSciNet  MATH  Google Scholar 

  38. Yang, F., Lin, Y., Zhang, J., Lou, Q.: Positive solutions for third-order boundary value problems with the integral boundary conditions and dependence on the first-order derivatives. J. Appl. Math. 2022, 8411318 (2022)

    MathSciNet  MATH  Google Scholar 

  39. Wang, Y., Ge, W.: Existence of solutions for a third order differential equation with integral boundary conditions. Comput. Math. Appl. 53(1), 144–154 (2007)

    MathSciNet  MATH  Google Scholar 

  40. Raja, V., Tamilselvan, A.: Numerical method for a system of singularly perturbed reaction diffusion equations with integral boundary conditions. Int. J. Appl. Comput. Math. 5, 1–12 (2019)

    MathSciNet  MATH  Google Scholar 

  41. Raja, V., Tamilselvan, A.: Difference scheme on a non-uniform mesh for singularly perturbed reaction diffusion equations with integral boundary condition. Numer. Anal. Appl. Math. 1, 33–44 (2020)

    MATH  Google Scholar 

  42. Natesan, S., Jayakumar, J., Vigo-Aguiarc, J.: Parameter uniform numerical method for singularly perturbed turning point problems exhibiting boundary layers. J. Comput. Appl. Math. 158, 121–134 (2003)

    MathSciNet  MATH  Google Scholar 

  43. Mo, J.Q., Wen, Z.H.: A class of boundary value problems for third-order differential equation with a turning point. Appl. Math. Mech. 31(8), 1027–1032 (2010)

    MathSciNet  MATH  Google Scholar 

  44. Mahendran, R., Subburayan, V.: Fitted finite difference method for third order singularly perturbed delay differential equations of convection diffusion type. Int. J. Comput. Methods 15, 1–17 (2018)

    MATH  Google Scholar 

Download references

Acknowledgements

We are very much thankful to the reviewer for his/her constructive comments and suggestions which have been useful for the improvement of this paper.

Author information

Authors and Affiliations

Authors

Contributions

Each author contributed equally to this work.

Corresponding author

Correspondence to V. Raja.

Ethics declarations

Conflict of interest

The authors declare that there are no Conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raja, V., Geetha, N., Mahendran, R. et al. Numerical solution for third order singularly perturbed turning point problems with integral boundary condition. J. Appl. Math. Comput. 71, 829–849 (2025). https://doi.org/10.1007/s12190-024-02266-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-024-02266-2

Keywords