Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Real-time motion attention and expressive gesture interfaces

  • Original Paper
  • Published:
Journal on Multimodal User Interfaces Aims and scope Submit manuscript

Abstract

This paper aims at investigating the relationship between gestures’ expressivity and the amount of attention they attract. We present a technique for quantifying behavior saliency, here understood as the capacity to capture one’s attention, by the rarity of selected motion and gestural expressive features. This rarity index is based on the real-time computation of the occurrence probability of expressive motion features numerical values. Hence, the time instants that correspond to rare unusual dynamic patterns of an expressive feature are singled out. In a multi-user scenario, the rarity index highlights the person in a group which shows the most different behavior with respect to the others. In a mono-user scenario, the rarity index highlights when the expressive content of a gesture changes. Those methods can be considered as preliminary steps toward context-aware expressive gesture analysis. This work has been partly carried out in the framework of the eNTERFACE 2008 workshop (Paris, France, August 2008) and is partially supported by the EU ICT SAME Project (www.sameproject.eu) and by the NUMEDIART Project (www.numediart.org).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berlyne DE, Berlyne DE (1974) Studies in the new experimental aesthetics

  2. Boiman O, Irani M (2007) Detecting irregularities in images and in video. Int J Comput Vis 74(1):17–31

    Article  Google Scholar 

  3. Bruce NDB, Tsotsos JK (2009) Saliency, attention, and visual search: An information theoretic approach. J Vis 9(3):5

    Google Scholar 

  4. Camurri A, Lagerlöf I, Volpe G (2003) Recognizing emotion from dance movement: Comparison of spectator recognition and automated techniques. Int J Hum Comput Stud Elsevier Sci 59:213–225

    Article  Google Scholar 

  5. Camurri A, Volpe G, De Poli G, Leman M (2005) Communicating expressiveness and affect in multimodal interactive systems. IEEE Multimed 43–53

  6. Cowan N (2001) The magical number 4 in short-term memory: A reconsideration of mental storage capacity. Behav Brain Sci 24(01):87–114

    Article  Google Scholar 

  7. Cowie R, Douglas-Cowie E, Tsapatsoulis N, Votsis G, Kollias S, Fellenz W, Taylor JG (2001) Emotion recognition in human-computer interaction. IEEE Signal Process Mag 18(1):32–80

    Article  Google Scholar 

  8. Dhavale N, Itti L (2003) Saliency-based multifoveated MPEG compression. In: Signal processing and its applications, 2003. Proceedings. Seventh international symposium on, vol 1

  9. Eastwood JD, Smilek D, Merikle PM (2001) Differential attentional guidance by unattended faces expressing positive and negative emotion. Percept Psychophys 63(6):1004–1013

    Google Scholar 

  10. eNTERFACE 2008. http://enterface08.limsi.fr/

  11. Glowinski D, Bracco F, Chiorri C, Atkinson A, Coletta P, Camurri A (2008) An investigation of the minimal visual cues required to recognize emotions from human upper-body movements. In: Proceedings of ACM international conference on multimodal interfaces (ICMI), workshop on affective interaction in natural environments (AFFINE). ACM, New York

    Google Scholar 

  12. Hatfield E, Cacioppo JT, Rapson RL (1994) Emotional contagion studies in emotion and social interaction. Editions de la Maison des sciences de l’homme

  13. Itti L, Baldi P (2006) Bayesian surprise attracts human attention. Adv Neural Inf Process Syst 18:547

    Google Scholar 

  14. Kurtenbach G, Hulteen EA (1992) Gestures in human-computer communication. In: The art of human-computer interface design, pp 309–317

  15. Le Meur O, Le Callet P, Barba D, Thoreau D (2006) A coherent computational approach to model bottom-up visual attention. IEEE Trans Pattern Anal Mach Intell, pp 802–817

  16. Liu F, Gleicher M (2006) Video retargeting: automating pan and scan. In: Proceedings of the 14th annual ACM international conference on multimedia. ACM, New York, pp 241–250

    Chapter  Google Scholar 

  17. Mancas M (2007) Computational attention: Towards attentive computers. Similar edition. CIACO University Distributors

  18. Mancas M (2009) Relative influence of bottom-up and top-down attention. In: Attention in cognitive systems. Lecture notes in computer science, vol 5395/2009. Springer, Berlin, pp 212–226

    Chapter  Google Scholar 

  19. Mancas M, Gosselin B, Macq B (2007) A three-level computational attention model. In: Proc of ICVS workshop on computational attention & applications, Germany

  20. Mancas M, Mancas-Thillou C, Gosselin B, Macq B (2007) A rarity-based visual attention map-application to texture description. In: Proceedings of IEEE international conference on image processing, pp 445–448

  21. Mehrabian A, Russell JA (1974) An approach to environmental psychology

  22. Parkhurst DJ, Niebur E (2004) Texture contrast attracts overt visual attention in natural scenes. Eur J Neurosci 19(3):783–789

    Article  Google Scholar 

  23. Picard RW (1997) Affective computing. MIT Press, Cambridge

    Google Scholar 

  24. Stormark KM, Hugdahl K, Posner MI (1999) Emotional modulation of attention orienting: A classical conditioning study. Scand J Psychol 40(2):91–99

    Article  Google Scholar 

  25. Velastin SA, Lo BA, Vicencio-Silva BPLJS (2005) PRISMATICA: toward ambient intelligence in public transport environments. IEEE Trans Syst Man Cybern, Part A 35(1):164–182

    Article  Google Scholar 

  26. Vuilleumier P, Armony J, Dolan R (2003) Reciprocal links between emotion and attention. In: Friston KJ, Frith CD, Dolan RJ, Price C, Ashburner J, Penny W, Zeki S, Frackowiak RSJ (eds) Human brain functions. Academic Press, San Diego, pp 419–444

    Google Scholar 

  27. Wallbott HG (1998) Bodily expression of emotion. Eur J Soc Psychol 28:879–896

    Article  Google Scholar 

  28. Watson D, Clark LA, Tellegen A (1988) Development and validation of brief measures of positive and negative affect: The PANAS scales. J Pers Soc Psychol 54(6):1063–1070

    Article  Google Scholar 

  29. Yee H, Pattanaik S, Greenberg DP (2001) Spatiotemporal sensitivity and visual attention for efficient rendering of dynamic environments. ACM Trans Graph (TOG) 20(1):39–65

    Article  Google Scholar 

  30. Zhang S, Stentiford F (2007) Motion detection using a model of visual attention. In: Image processing, 2007. ICIP 2007. IEEE international conference on, vol 3

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matei Mancas.

Additional information

Portions of this work were presented in “Proceedings of eNTERFACE’08”.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mancas, M., Glowinski, D., Volpe, G. et al. Real-time motion attention and expressive gesture interfaces. J Multimodal User Interfaces 2, 187 (2008). https://doi.org/10.1007/s12193-009-0017-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12193-009-0017-5

Keywords