Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Terminal sliding mode control for full vehicle active suspension systems

  • Published:
Journal of Mechanical Science and Technology Aims and scope Submit manuscript

Abstract

In current study, a terminal sliding mode control approach different from the conventional sliding mode control is proposed for active suspension system, which has an ability to reach the sliding surface in a finite time to achieve a high control accuracy. A full vehicle active suspension model is adopted with consideration of system uncertainties. The terminal sliding mode controller (TSMC) is systematically designed to force motion trajectories of vehicle body to accurately track the ideal reference model, and the controller parameters are tuned by a novel kidney-inspired algorithm (KA) for better control performance. The thought of designing an adaptive scheme for the reference model is one of the main contribution of this work. Simulation results clearly show the strength of adaptive scheme. The effectiveness and the strong robustness in stabilizing the attitude of the vehicle and improving the ride comfort are the main positive features of the proposed TSMC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Hrovat, Survey of advanced suspension developments and related optimal control applications 1,2, Automatica, 33 (10) (1997) 1781–1817.

    Article  MathSciNet  MATH  Google Scholar 

  2. W. C. Sun, H. H. Pan, Y. F. Zhang and H. J. Gao, Multiobjective control for uncertain nonlinear active suspension systems, Mechatronics, 24 (4) (2014) 318–327.

    Article  Google Scholar 

  3. M. Moradi and A. Fekih, Adaptive PID-sliding-mode faulttolerant control approach for vehicle suspension systems subject to actuator faults, IEEE T Veh Technol, 63 (3) (2014) 1041–1054.

    Article  Google Scholar 

  4. S. Chen, T. Shi, D. Wang and J. Chen, Multi-objective optimization of the vehicle ride comfort based on Kriging approximate model and NSGA-II, Journal of Mechanical Science and Technology, 29 (3) (2015) 1007–1018.

    Article  Google Scholar 

  5. M. Montazeri-Gh and M. Soleymani, Investigation of the energy regeneration of active suspension system in hybrid electric vehicles, IEEE T Ind Electron, 57 (3) (2010) 918–925.

    Article  Google Scholar 

  6. H. Y. Li, J. Y. Yu, C. Hilton and H. H. Liu, Adaptive sliding-mode control for nonlinear active suspension vehicle systems using T-S fuzzy approach, IEEE T Ind Electron, 60 (8) (2013) 3328–3338.

    Article  Google Scholar 

  7. S. M. Savaresi and C. Spelta, A single-sensor control strategy for semi-active suspensions, IEEE T Contr Syst T, 17 (1) (2009) 143–152.

    Article  Google Scholar 

  8. V. Sankaranarayanan, M. E. Emekli, B. A. Gilvenc and L. Guvenc, Semiactive suspension control of a light commercial vehicle, IEEE/ASME Transactions on Mechatronics, 13 (5) (2008) 598–604.

    Article  Google Scholar 

  9. A. G. Thompson, An active suspension with optimal linear state feedback, Vehicle Syst. Dyn., 5 (4) (1976) 187–203.

    Article  Google Scholar 

  10. D. Hrovat, Applications of optimal control to advanced automotive suspension design, Journal of Dynamic Systems Measurement and Control, 115 (2B) (1993) 328–342.

    Article  Google Scholar 

  11. J. Lin and R. J. Lian, Intelligent control of active suspension systems, IEEE T Ind Electron, 58 (2) (2011) 618–628.

    Article  MathSciNet  Google Scholar 

  12. J. T. Cao, P. Li and H. H. Liu, An interval fuzzy controller for vehicle active suspension systems, IEEE T Intell Transp, 11 (4) (2010) 885–895.

    Article  Google Scholar 

  13. S. Palanisamy and S. Karuppan, Fuzzy control of active suspension system, Journal of Vibroengineering, 18 (5) (2016) 3197–3204.

    Article  Google Scholar 

  14. S. Rajendiran and P. Lakshmi, Simulation of PID and fuzzy logic controller for integrated seat suspension of a quarter car with driver model for different road profiles, Journal of Mechanical Science and Technology, 30 (10) (2016) 4565–4570.

    Article  Google Scholar 

  15. S. Yildirim, Vibration control of suspension systems using a proposed neural network, J Sound Vib., 277 (4-5) (2004) 1059–1069.

    Article  Google Scholar 

  16. I. Eski and S. Yidirim, Vibration control of vehicle active suspension system using a new robust neural network control system, Simul Model Pract Th, 17 (5) (2009) 778–793.

    Article  Google Scholar 

  17. G. Koch and T. Kloiber, Driving state adaptive control of an active vehicle suspension system, IEEE T Contr Syst T, 22 (1) (2014) 44–57.

    Article  Google Scholar 

  18. A. Alleyne and J. K. Hedrick, Nonlinear adaptive control of active suspensions, IEEE T Contr Syst T, 3 (1) (1995) 94–101.

    Article  Google Scholar 

  19. N. Yagiz and Y. Hacioglu, Backstepping control of a vehicle with active suspensions, Control Eng Pract, 16 (12) (2008) 1457–1467.

    Article  Google Scholar 

  20. R. Kalaivani and P. Lakshmi, Adaptive backstepping controller for a vehicle active suspension system, IET Chennai Fourth International Conference on Sustainable Energy and Intelligent Systems, Chennai, India (2013) 152–158.

    Google Scholar 

  21. J. Lin, R. J. Lian, C. N. Huang and W. T. Sie, Enhanced fuzzy sliding mode controller for active suspension systems, Mechatronics, 19 (7) (2009) 1178–1190.

    Article  Google Scholar 

  22. U. N. L. T. Alves, J. P. F. Garcia, M. C. M. Teixeira, S. C. Garcia and F. B. Rodrigues, Sliding mode control for active suspension system with data acquisition delay, Math Probl Eng. (2014).

    Google Scholar 

  23. G. Wang, C. Z. Chen and S. B. Yu, Optimization and static output-feedback control for half-car active suspensions with constrained information, J. Sound Vib., 378 (2016) 1–13.

    Article  Google Scholar 

  24. S. Wen, M. Z. Q. Chen, Z. Zeng and X. Yu, Fuzzy control for uncertain vehicle active suspension systems via dynamic sliding-mode approach, IEEE Transactions on Systems, Man and Cybernetics: Systems, 47 (1) (2017) 24–32.

    Article  Google Scholar 

  25. S. B. Liu, H. Y. Zhou, X. X. Luo and J. Xiao, Adaptive sliding fault tolerant control for nonlinear uncertain active suspension systems, J. Franklin I, 353 (1) (2016) 180–199.

    Article  MathSciNet  Google Scholar 

  26. D. Karnopp, M. J. Crosby and R. A. Harwood, Vibration control using semi-active force generators, Journal of Engineering for Industry, 96 (2) (1974) 619–626.

    Article  Google Scholar 

  27. D. Karnopp, Active damping in road vehicle suspension systems, Vehicle Syst. Dyn., 12 (6) (1983) 291–311.

    Article  Google Scholar 

  28. M. Sunwoo, K. C. Cheok and N. J. Huang, Model reference adaptive control for vehicle active suspension systems, IEEE T Ind Electron, 38 (3) (1991) 217–222.

    Article  Google Scholar 

  29. H. L. Zhang, E. R. Wang, N. Zhang, F. H. Min, R. Subash and C. Y. Su, Semi-active sliding mode control of vehicle suspension with magneto-rheological damper, Chin J. Mech. Eng-En, 28 (1) (2015) 63–75.

    Article  Google Scholar 

  30. M. Yokoyama, J. K. Hedrick and S. Toyama, A model following sliding mode controller for semi-active suspension systems with MR dampers, Pro. of the American Control Conference, Arlington, VA, USA, 4 (2001) 2652–2657.

    Article  Google Scholar 

  31. S. Hui, Q. Wei and W. Enrong, The sliding modelfollowing control for semi-active MR-vehicle suspension, Pro. of the IEEE International Conference on Networking, Sensing and Control, Chicago, IL, USA (2010) 351–354.

    Google Scholar 

  32. N. Boonsatit and C. Pukdeboon, Adaptive fast terminal sliding mode control of magnetic levitation system, J. Control Autom Elec., 27 (4) (2016) 359–367.

    Article  Google Scholar 

  33. H. H. Pan, W. C. Sun, H. J. Gao and J. Y. Yu, Finite-time stabilization for vehicle active suspension systems with hard constraints, IEEE T Intell Transp, 16 (5) (2015) 2663–2672.

    Article  Google Scholar 

  34. T. Elmokadem, M. Zribi and K. Youcef-Toumi, Terminal sliding mode control for the trajectory tracking of underactuated autonomous underwater vehicles, Ocean Engineering, 129 (2017) 613–625.

    Article  MATH  Google Scholar 

  35. M.-D. Tran and H.-J. Kang, Adaptive terminal sliding mode control of uncertain robotic manipulators based on local approximation of a dynamic system, Neurocomputing, 228 (2017) 231–240.

    Article  Google Scholar 

  36. Z. Zhao, J. Zhang, L. Sun and D. Zhang, Terminal sliding mode control with adaptive law for uncertain nonlinear system, Math. Probl. Eng., 2015 (2015) 1–7.

    MathSciNet  Google Scholar 

  37. Q. Khan, R. Akmeliawati, A. I. Bhatti and M. A. Khan, Robust stabilization of underactuated nonlinear systems: A fast terminal sliding mode approach, ISA Transactions, 66 (2017) 241–248.

    Article  Google Scholar 

  38. W. Gao, Variable structure control theory and design method, First Ed., Science Press, Beijing, China (1996).

    Google Scholar 

  39. W. Sun, H. Gao and B. Yao, Adaptive robust vibration control of full-car active suspensions with electrohydraulic actuators, IEEE T Contr Syst T, 21 (6) (2013) 2417–2422.

    Article  Google Scholar 

  40. J. J. Rath, M. Defoort, H. R. Karimi and K. C. Veluvolu, Output feedback active suspension control with higher order terminal sliding mode, IEEE T Ind Electron, 64 (2) (2017) 1392–1403.

    Article  Google Scholar 

  41. X. Dong, D. Zhao, B. Yang and C. Han, Fractional-order control of active suspension actuator based on parallel adaptive clonal selection algorithm, Journal of Mechanical Science and Technology, 30 (6) (2016) 2769–2781.

    Article  Google Scholar 

  42. J. J. Rath, K. C. Veluvolu and M. Defoort, Simultaneous estimation of road profile and tire road friction for automotive vehicle, IEEE T Veh Technol, 64 (10) (2015) 4461–4471.

    Article  Google Scholar 

  43. H. Li, X. Jing and H. R. Karimi, Output-feedback-based control for vehicle suspension systems with control delay, IEEE T Ind Electron, 61 (1) (2014) 436–446.

    Article  Google Scholar 

  44. H. C. Kang, S. S. Kim and C. H. Lee, Parallel processing with the subsystem synthesis method for efficient vehicle analysis, Journal of Mechanical Science and Technology, 29 (7) (2015) 2663–2669.

    Article  Google Scholar 

  45. G. T. 7031, Vehicle vibration -Describing method for road surface irregularity (1986).

  46. L. Zhang and T. Zhang, Study on general model of random inputs of the vehicle with four wheels correlated in time domain, Transactions of the Chinese Society for Agricultural Machinery, 36 (12) (2005) 29–31.

    Google Scholar 

  47. Y. Yao, Research on the application of variable structure terminal sliding mode control on aero-engine, Northwestern Polytechnical University, Xi'an, China (2004).

    Google Scholar 

  48. N. S. Jaddi, J. Alvankarian and S. Abdullah, Kidneyinspired algorithm for optimization problems, Commun Nonlinear Sci., 42 (2017) 358–369.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dingxuan Zhao.

Additional information

Miaomiao Du is a doctoral candidate in School of Mechanical Science and Engineering, Jilin University, Changchun, China. Her current research interests include active suspension control, electrohydraulic servo control and and mechanical system dynamics.

Dingxuan Zhao is a Distinguished Processor of Chang Jiang Scholars Program. His main research interests are engineering robots, dynamics and simulation of complex mechanical systems. He is a Professor at Jilin University and a Professor at Yanshan University.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, M., Zhao, D., Yang, B. et al. Terminal sliding mode control for full vehicle active suspension systems. J Mech Sci Technol 32, 2851–2866 (2018). https://doi.org/10.1007/s12206-018-0541-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12206-018-0541-x

Keywords