Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Gradient Type Term for the k-Hessian Equation

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

In this paper, we propose a gradient type term for the k-Hessian equation that extends for \(k>1\) the classical quadratic gradient term associated with the Laplace equation. We prove that such as gradient term is invariant by the Kazdan–Kramer change of variables. As applications, we ensure the existence of solutions for a new class of k-Hessian equation in the sublinear and superlinear cases for Sobolev type growth. The threshold for existence is obtained in some particular cases. In addition, for the Trudinger–Moser type growth regime, we also prove the existence of solutions under either subcritical or critical conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Data availability is not applicable to this work.

Code Availability

Not applicable.

References

  1. Abdellaoui, B., Dall’Aglio, A., Peral, I.: Some remarks on elliptic problems with critical growth in the gradient. J. Differ. Equ. 222(1), 21–62 (2006)

    Article  MathSciNet  Google Scholar 

  2. Caffarelli, L., Nirenberg, L., Spruck, J.: The Dirichlet problem for nonlinear second elliptic equations, I. Monge-Ampere equations. Commun. Pure Appl. Math. 37, 369–402 (1984)

    Article  MathSciNet  Google Scholar 

  3. Chou, K.S., Wang, X.-J.: A variational theory of the Hessian equation. Commun. Pure Appl. Math. 54, 1029–1064 (2001)

    Article  MathSciNet  Google Scholar 

  4. De Figueiredo, D.G., Miyagaki, O.H., Ruf, B.: Elliptic equations in \(\mathbb{R} ^2\) with nonlinearities in the critical growth range. Calc. Var. Partial Differ. Equ. 3, 139–153 (1995)

    Article  Google Scholar 

  5. De Figueiredo, D.G., Gossez, J.P., Quoirin, H.R., Ubilla, P.: Elliptic equations involving the \(p\)-Laplacian and a gradient term having natural growth. Rev. Mat. Iberoam. 35, 173–194 (2019)

    Article  MathSciNet  Google Scholar 

  6. De Oliveira, J.F., Ubilla, P.: Admissible solutions to Hessian equations with exponential growth. Rev. Mat. Iberoam. 37, 747–773 (2021)

    MathSciNet  Google Scholar 

  7. De Oliveira, J.F., Do Ó, J.M., Ubilla, P.: Existence for a \(k\)-Hessian equation involving supercritical growth. J. Differ. Equ. 267, 1001–1024 (2019)

  8. García-Melían, J., Iturriaga, L., Quoirin, H.R.: A priori bounds and existence of solutions for slightly superlinear elliptic problems. Adv. Nonlinear Stud. 15(4), 923–938 (2015)

    Article  MathSciNet  Google Scholar 

  9. Guan, B.: The Dirichlet problem for Hessian equations on Riemannian manifolds. Calc. Var. Partial Differ. Equ. 8, 45–69 (1999)

    Article  MathSciNet  Google Scholar 

  10. Guowei, D.: Bifurcation and admissible solutions for the Hessian equation. J. Funct. Anal. 273, 3200–3240 (2017)

    Article  MathSciNet  Google Scholar 

  11. Hamid, H.A., Bidaut-Veron, M.F.: On the connection between two quasilinear elliptic problems with source terms of order \(0\) or \(1\). Commun. Contemp. Math. 12(5), 727–788 (2010)

    Article  MathSciNet  Google Scholar 

  12. Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press, New York (2013)

    Google Scholar 

  13. Jeanjean, L., Quoirin, H.: R Multiple solutions for an indefinite elliptic problem with critical growth in the gradient. Proc. Am. Math. Soc. 144(2), 575–586 (2016)

    Article  MathSciNet  Google Scholar 

  14. Jeanjean, L., Sirakov, B.: Existence and multiplicity for elliptic problems with quadratic growth in the gradient. Commun. Partial Differ. Equ. 38(2), 244–264 (2013)

    Article  MathSciNet  Google Scholar 

  15. Kazdan, J.L., Kramer, R.J.: Invariant criteria for existence of solutions to second-order quasilinear elliptic equations. Commun. Pure Appl. Math. 31(5), 619–645 (1978)

    Article  MathSciNet  Google Scholar 

  16. Li, J., Yin, J., Ke, Y.: Existence of positive solutions for the p-Laplacian with p-gradient term. J. Math. Anal. Appl. 383(1), 147–158 (2011)

    Article  MathSciNet  Google Scholar 

  17. Phuc, N.C., Verbisky, I.E.: Quasilinear and Hessian equations of Lane-Emden type. Ann. Math. 168, 859–914 (2008)

    Article  MathSciNet  Google Scholar 

  18. Phuc, N.C., Verbisky, I.E.: Singular quasilinear and Hessian equations and inequalities. J. Funct. Anal. 256, 1875–1906 (2009)

    Article  MathSciNet  Google Scholar 

  19. Porretta, A., Segura de Leon, S.: Nonlinear elliptic equations having a gradient term with natural growth. J. Math. Pures Appl. (9) 85(3), 465–492 (2006)

    Article  MathSciNet  Google Scholar 

  20. Pucci, P., Serrin, J.: A general variational identity. Indiana Univ. Math. J. 35, 681–703 (1986)

    Article  MathSciNet  Google Scholar 

  21. Sheng, W.M., Trudinger, N.S., Wang, X.J.: The Yamabe problem for higher order curvatures. J. Differ. Geom. 77, 515–553 (2007)

    Article  MathSciNet  Google Scholar 

  22. Tian, G.-T., Wang, X.-J.: Moser-Trudinger type inequalities for the Hessian equation. J. Funct. Anal. 259(8), 1974–2002 (2010)

    Article  MathSciNet  Google Scholar 

  23. Trudinger, N.S., Wang, X.-J.: Hessian measures II. Ann. Math. 150, 579–604 (1999)

    Article  MathSciNet  Google Scholar 

  24. Tso, K.: Remarks on critical exponents for Hessian operators. Ann. Inst. H. Poincaré Anal. Non Linéaire 7, 113–122 (1990)

    Article  MathSciNet  Google Scholar 

  25. Wang, X.-J.: A class of fully nonlinear elliptic equations and related functionals. Indiana Univ. Math. J. 43(1), 25–54 (1994)

    Article  MathSciNet  Google Scholar 

  26. Wang, X.-J.: The k-Hessian Equation. Lecture Notes in Mathematics (1977), pp. 177–252. Springer, New York (2009)

  27. Wei, W.: Uniqueness theorems for negative radial solutions of k-Hessian equations in a ball. J. Differ. Equ. 261, 3756–3771 (2016)

    Article  MathSciNet  Google Scholar 

  28. Wei, W.: Existence and multiplicity for negative solutions of k-Hessian equations. J. Differ. Equ. 263, 615–640 (2017)

    Article  MathSciNet  Google Scholar 

  29. Zhang, X., Feng, M.: The existence and asymptotic behavior of boundary blow-up solutions to the k-Hessian equation. J. Differ. Equ. 267, 4626–4672 (2019)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous referee for valuable suggestions that improved the quality of the paper.

Funding

The work was partially supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq-Brazil) Grant 309491/2021-5 and Fundação de Amparo à Pesquisa do Estado do Piauí - FAPEPI.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to this work.

Corresponding author

Correspondence to José Francisco de Oliveira.

Ethics declarations

Conflict of interest

All authors declare that there is no Conflict of interest.

Ethical Approval

Not applicable.

Consent to Participate

All authors contributed equally to this work of their own free will.

Consent for Publication

All authors read and approved the final manuscript for publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cardoso, M., de Brito Sousa, J. & de Oliveira, J.F. A Gradient Type Term for the k-Hessian Equation. J Geom Anal 34, 19 (2024). https://doi.org/10.1007/s12220-023-01458-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12220-023-01458-9

Keywords

Mathematics Subject Classification