Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Numerical modeling of journal bearing considering both elastohydrodynamic lubrication and multi-flexible-body dynamics

  • Published:
International Journal of Automotive Technology Aims and scope Submit manuscript

Abstract

This study uses an elastohydrodynamic lubrication model coupled with multi-flexible-body dynamics (MFBD) to analyze dynamic bearing lubrication characteristics, such as pressure distribution and oil film thickness. To solve the coupled fluid-structure interaction system, this study uses an MFBD solver and an elastohydrodynamics module. The elastohydrodynamics module passes its force and torque data to the MFBD solver, which can solve general dynamic systems that include rigid and flexible bodies, joints, forces, and contact elements. The MFBD solver analyzes the positions, velocities, and accelerations of the multi-flexible-body system while incorporating the pressure distribution results of the elastohydrodynamics module. The MFBD solver then passes the position and velocity information back to the elastohydrodynamics solver, which reanalyzes the force, torque, and pressure distribution. This iteration is continued throughout the analysis time period. Other functions, such as mesh grid control and oil hole and groove effects, are also implemented. Numerical examples for bearing lubrication systems are demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bae, D. S., Han, J. M., Choi, J. H. and Yang, S. M. (2001). A generalized recursive formulation for constrained flexible multibody dynamics. Int. J. Numerical Methods in Engineering, 50, 1841–1859.

    Article  MATH  Google Scholar 

  • Choi, J. (2009). A Study on the Analysis of Rigid and Flexible Body Dynamics with Contact. Ph. D. Dissertation. Seoul Nat’l University. Seoul. Korea.

    Google Scholar 

  • Chung, G. and Hulbert, G. M. (1993). A time integration algorithm for structural dynamics with improved numerical dissipation: Ther generalized-α method. Trans. ASME, J. Applied Mechanics 60,2, 371–375.

    Article  MathSciNet  MATH  Google Scholar 

  • Dowson, D. and Higginson, G. R. (1959). A numerical solution to the elastohydrodynamic problem. J. Mech. Eng. Sci., 1, 6–15.

    Article  Google Scholar 

  • Dowson, D. and Higginson, G. R. (1977). Elastohydrodynamic Lubrication. SI Edn. Chapter 6. Pergamon Press. Oxford.

    Google Scholar 

  • García de Jalón, D. J., Unda, J. and Avello, A. (1986). Natural coordinates for the computer analysis of multibody systems. Computer Methods in Applied Mechanics and Engineering, 56, 309–327.

    Article  MATH  Google Scholar 

  • Gohar, R. (2001). Elastohydrodynamics. 2nd Edn. Imperial College Press. London.

    Google Scholar 

  • Greenwood, J. A. and Tripp, J. H. (1971). The contact of two nominally flat rough surfaces. Proc. Instn. Mech. Engrs., Part 1, 185,48, 625–633.

    Google Scholar 

  • Hahn, H. W. (1957). Das Zulindrische Gleitlager endlicher Breite unter zeitlich veranderlicher Belastung. Diss. TH. Karlsruhe. Germany.

  • Hamrock, B. J. and Dowson, D. (1976). Isothermal elastohydrodynamic lubrication of point contacts, Part I, Theoretical Formulation. ASME J. Lubr. Technol., 98, 223–229.

    Article  Google Scholar 

  • Labouff, G. A. and Booker, J. F. (1985). Dynamically loaded journal bearings: A finite element treatment for rigid and elastic surfaces. ASME, J. Tribology 107,4, 505–515.

    Article  Google Scholar 

  • Nakayama, K., Morio, I., Katagiri, T. and Okamoto, Y. (2003). A study for measurement of oil film thickness on engine bearing by using laser induced fluorescence (LIF) method. SAE Int.

  • Oh, K. P. and Goenka, P. K. (1985). The elastohydrodynamic solution of journal bearings under dynamic loading. ASME, J. Tribology 107,3, 389–395.

    Article  Google Scholar 

  • Ott, H. H. (1948). Zylindrische Gleitlager unter instationarer Belastung. Diss. ETH. Zurich.

  • Patankar, S. V. (1980). Numerical Heat Transfer and Fluid Flow. Hemisphere. Washington.

  • Peiskammer, D., Riener, H., Prandstotter, M. and Steinbatz, M. (2002). Simulation of motor components: Intergration of EHD — MBS — FE — Fatigue. ADAMS User Conf..

  • RecurDyn™ Manual (2010). http://www.functionbay.co.kr, FunctionBay, Inc..

  • Reynolds, O. (1986). On the theory of lubrication and its application to Mr. Beauchamp tower’s experiments, including an experimental determination of the viscosity of olive oil. Phil. Trans. Roy. Soc., 177, 157–234.

    Google Scholar 

  • Riener, H., Prandstotter, M. and Witteveen, W. (2001). Conrod Simulation: Integration on EHD — MBS — FE — Fatigue. ADAMS User Conf..

  • Sabersky, R. H., Acosta, A. J. and Hauptmann, E. G. (1989). Fluid Flow: A First Course in Fluid Mechanics. 3rd Edn. Maxwell Macmillan Int. Edn. New York.

    Google Scholar 

  • Jang, S. and Park, Y. (2005). Study on the effect of aerated lubricant on the journal trace in the engine bearing clearance. Int. J. Automotive Technology 6,4, 421–427.

    Google Scholar 

  • Taylor, C. M. (1993). Engine Tribology. Elsevier. Netherlands. 75–87.

    Book  Google Scholar 

  • Wittenburg, J. (1977). Dynamics of Systems of Rigid Bodies. B. G. Teubner. Stuttgart.

    MATH  Google Scholar 

  • Zhu, D. and Cheng, H. S. (1998). Effect of surface roughness on the point contact EHL. Trans. ASME, J. Tribology, 110, 32–37.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. H. Choi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choi, J., Kim, S.S., Rhim, S.S. et al. Numerical modeling of journal bearing considering both elastohydrodynamic lubrication and multi-flexible-body dynamics. Int.J Automot. Technol. 13, 255–261 (2012). https://doi.org/10.1007/s12239-012-0022-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12239-012-0022-7

Key Words