Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Controllable printing of large-scale compact perovskite films for flexible photodetectors

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Perovskite materials are promising candidates for the next generation of wearable optoelectronics. However, due to uncontrolled crystallization and the natural brittle property of crystals, it remains a great challenge to fabricate large-scale compact and tough perovskite film. Here we report a facile method to print large-scale perovskite films with high quality for flexible photodetectors. By introducing a soluble polyethylene oxide (PEO) layer during the inkjet printing process, the nucleation and crystal growth of perovskite is well controlled. Perovskite films can be easily printed in large scale and patterned in high resolution. Moreover, this method can be extended to various kinds of perovskite materials, such as MAPbI3 (MA = methylammonium), MA3Sb2I9, and (BA)2PbBr4 (BA = benzylammonium). The printed perovskite films show high quality and excellent mechanical performance. The photodetectors based on the MAPbBr3 perovskite films show a responsivity up to ∼ 1,036 mA/W and maintain over 96.8% of the initial photocurrent after 15,000 consecutive bending cycles. This strategy provides a facile approach to prepare large-scale flexible perovskite films. It opens up new opportunities for the fabrication of diverse wearable optoelectronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Find the latest articles, discoveries, and news in related topics.

References

  1. Wei, J.; Wang, X.; Sun, X. Y.; Yang, Z. F.; Moreels, I.; Xu, K.; Li, H. B. Polymer assisted deposition of high-quality CsPbI2Br film with enhanced film thickness and stability. Nano Res. 2020, 13, 684–690.

    Article  CAS  Google Scholar 

  2. Li, X. M.; Wang, K. L.; Lgbari, F.; Dong, C.; Yang, W. F.; Ma, C.; Ma, H.; Wang, Z. K.; Liao, L. S. Indium doped CsPbI3 films for inorganic perovskite solar cells with efficiency exceeding 17%. Nano Res. 2020, 13, 2203–2208.

    Article  CAS  Google Scholar 

  3. Meng, L. X.; Wang, M.; Sun, H. X.; Tian, W.; Xiao, C. H.; Wu, S. L.; Cao, F. R.; Li, L. Designing a transparent CdIn2S4/In2S3 bulk-heterojunction photoanode integrated with a perovskite solar cell for unbiased water splitting. Adv. Mater. 2020, 32, 2002893.

    Article  CAS  Google Scholar 

  4. Da, P. M.; Zheng, G. F. Tailoring interface of lead-halide perovskite solar cells. Nano Res. 2017, 10, 1471–1497.

    Article  CAS  Google Scholar 

  5. Lee, H. D.; Kim, H.; Cho, H.; Cha, W.; Hong, Y.; Kim, Y. H.; Sadhanala, A.; Venugopalan, V.; Kim, J. S.; Choi, J. W. et al. Efficient ruddlesden-popper perovskite light-emitting diodes with randomly oriented nanocrystals. Adv. Funct. Mater. 2019, 29, 1901225.

    Article  Google Scholar 

  6. Park, M. H.; Park, J.; Lee, J.; So, H. S.; Kim, H.; Jeong, S. H.; Han, T. H.; Wolf, C.; Lee, H.; Yoo, S. et al. Efficient perovskite light-emitting diodes using polycrystalline core-shell-mimicked nanograins. Adv. Funct. Mater. 2019, 29, 1902017.

    Article  Google Scholar 

  7. Wang, C. H.; Han, D. B.; Wang, J. H.; Yang, Y. G.; Liu, X. Y.; Huang, S.; Zhang, X.; Chang, S.; Wu, K. F.; Zhong, H. Z. Dimension control of in situ fabricated CsPbClBr2 nanocrystal films toward efficient blue light-emitting diodes. Nat. Commun. 2020, 11, 6428.

    Article  CAS  Google Scholar 

  8. Feng, J. G.; Yan, X. X.; Liu, Y.; Gao, H. F.; Wu, Y. C.; Su, B.; Jiang, L. Crystallographically aligned perovskite structures for high-performance polarization-sensitive photodetectors. Adv. Mater. 2017, 29, 1605993.

    Article  Google Scholar 

  9. Gao, H. F.; Feng, J. G.; Pi, Y. Y.; Zhou, Z. H.; Zhang, B.; Wu, Y. C.; Wang, X. D.; Jiang, X. Y.; Jiang, L. Bandgap engineering of single-crystalline perovskite arrays for high-performance photodetectors. Adv. Funct. Mater. 2018, 28, 1804349.

    Article  Google Scholar 

  10. Sun, H. X.; Tian, W.; Wang, X. F.; Deng, K. M.; Xiong, J.; Li, L. In situ formed gradient bandgap-tunable perovskite for ultrahigh-speed color/spectrum-sensitive photodetectors via electron-donor control. Adv. Mater. 2020, 32, 1908108.

    Article  CAS  Google Scholar 

  11. Zhang, W.; Peng, L.; Liu, J.; Tang, A. W.; Hu, J. S.; Yao, J. N.; Zhao, Y. S. Controlling the cavity structures of two-photon-pumped perovskite microlasers. Adv. Mater. 2016, 28, 4040–4046.

    Article  CAS  Google Scholar 

  12. Liu, X. F.; Niu, L.; Wu, C. Y.; Cong, C. X.; Wang, H.; Zeng, Q. S.; He, H. Y.; Fu, Q. D.; Fu, W.; Yu, T. et al. Periodic organic-inorganic halide perovskite microplatelet arrays on silicon substrates for room-temperature lasing. Adv. Sci. 2016, 3, 1600137.

    Article  Google Scholar 

  13. Wu, Z. Y.; Chen, J.; Mi, Y.; Sui, X. Y.; Zhang, S.; Du, W. N.; Wang, R.; Shi, J.; Wu, X. X.; Qiu, X. H. et al. All-inorganic CsPbBr3 nanowire based plasmonic lasers. Adv. Opt. Mater. 2018, 6, 1800674.

    Article  Google Scholar 

  14. Duan, X. P.; Li, X.; Tan, L. C.; Huang, Z. Q.; Yang, J.; Liu, G. L.; Lin, Z. J.; Chen, Y. W. Controlling crystal growth via an autonomously longitudinal scaffold for planar perovskite solar cells. Adv. Mater. 2020, 32, 2000617.

    Article  CAS  Google Scholar 

  15. Chen, X. G.; Song, X. J.; Zhang, Z. X.; Zhang, H. Y.; Pan, Q.; Yao, J.; You, Y. M.; Xiong, R. G. Confinement-driven ferroelectricity in a two-dimensional hybrid lead iodide perovskite. J. Am. Chem. Soc. 2020, 142, 10212–10218.

    Article  CAS  Google Scholar 

  16. Li, L. Y.; Liu, J. X.; Zeng, M. Q.; Fu, L. Space-confined growth of metal halide perovskite crystal films. Nano Res. 2020, 14, 1609–1624.

    Article  CAS  Google Scholar 

  17. Liu, X.; Wang, Y. B.; Wu, T. H.; He, X.; Meng, X. Y.; Barbaud, J.; Chen, H.; Segawa, H.; Yang, X. D.; Han, L. Y. Efficient and stable tin perovskite solar cells enabled by amorphous-polycrystalline structure. Nat. Commun. 2020, 11, 2678.

    Article  CAS  Google Scholar 

  18. Liu, X.; Wu, T. H.; Chen, J. Y.; Meng, X. Y.; He, X.; Noda, T.; Chen, H.; Yang, X. D.; Segawa, H.; Wang, Y. B. et al. Templated growth of FASnI3 crystals for efficient tin perovskite solar cells. Energy Environ. Sci. 2020, 13, 2896–2902.

    Article  CAS  Google Scholar 

  19. Barrows, A. T.; Pearson, A. J.; Kwak, C. K.; Dunbar, A. D. F.; Buckley, A. R.; Lidzey, D. G. Efficient planar heterojunction mixed-halide perovskite solar cells deposited via spray-deposition. Energy Environ. Sci. 2014, 7, 2944–2950.

    Article  CAS  Google Scholar 

  20. Bag, S.; Deneault, J. R.; Durstock, M. F. Aerosol-jet-assisted thin-film growth of CH3NH3PbI3 perovskites-a means to achieve high quality, defect-free films for efficient solar cells. Adv. Energy Mater. 2017, 7, 1701151.

    Article  Google Scholar 

  21. Chen, H.; Ye, F.; Tang, W. T.; He, J. J.; Yin, M. S.; Wang, Y. B.; Xie, F. X.; Bi, E. B.; Yang, X. D.; Grätzel, M. et al. A solvent- and vacuum-free route to large-area perovskite films for efficient solar modules. Nature 2017, 550, 92–95.

    Article  CAS  Google Scholar 

  22. Ye, F.; Chen, H.; Xie, F.; Tang, W.; Yin, M.; He, J.; Bi, E.; Wang, Y.; Yang, X.; Han, L. Soft-cover deposition of scaling-up uniform perovskite thin films for high cost-performance solar cells. Energy Environ. Sci. 2016, 9, 2295–2301.

    Article  CAS  Google Scholar 

  23. Ye, F.; Tang, W. T.; Xie, F. X.; Yin, M. S.; He, J. J.; Wang, Y. B.; Chen, H.; Qiang, Y. H.; Yang, X. D.; Han, L. Y. Low-temperature soft-cover deposition of uniform large-scale perovskite films for high-performance solar cells. Adv. Mater. 2017, 29, 1701440.

    Article  Google Scholar 

  24. Kim, J. H.; Williams, S. T.; Cho, N.; Chueh, C. C.; Jen, A. K. Y. Enhanced environmental stability of planar heterojunction perovskite solar cells based on blade-coating. Adv. Energy Mater. 2015, 5, 1401229.

    Article  Google Scholar 

  25. Deng, Y. H.; Zheng, X. P.; Bai, Y.; Wang, Q.; Zhao, J. J.; Huang, J. S. Surfactant-controlled ink drying enables high-speed deposition of perovskite films for efficient photovoltaic modules. Nat. Energy 2018, 3, 560–566.

    Article  CAS  Google Scholar 

  26. Li, S. G.; Jiang, K. J.; Su, M. J.; Cui, X. P.; Huang, J. H.; Zhang, Q. Q.; Zhou, X. Q.; Yang, L. M.; Song, Y. L. Inkjet printing of CH3NH3PbI3 on a mesoscopic TiO2 film for highly efficient perovskite solar cells. J. Mater. Chem. A 2015, 3, 9092–9097.

    Article  CAS  Google Scholar 

  27. Wei, Z. H.; Chen, H. N.; Yan, K. Y.; Yang, S. H. Inkjet printing and instant chemical transformation of a CH3NH3PbI3/nanocarbon electrode and interface for planar perovskite solar cells. Angew. Chem., Int. Ed. 2014, 53, 13239–13243.

    Article  CAS  Google Scholar 

  28. Hu, X. T.; Meng, X. C.; Zhang, L.; Zhang, Y. Y.; Cai, Z. R.; Huang, Z. Q.; Su, M.; Wang, Y.; Li, M. Z.; Li, F. Y. et al. A mechanically robust conducting polymer network electrode for efficient flexible perovskite solar cells. Joule 2019, 3, 2205–2218.

    Article  CAS  Google Scholar 

  29. Dai, X. Z.; Deng, Y. H.; Van Brackle, C. H.; Chen, S. S.; Rudd, P. N.; Xiao, X.; Lin, Y.; Chen, B.; Huang, J. S. Scalable fabrication of efficient perovskite solar modules on flexible glass substrates. Adv. Energy Mater. 2020, 10, 1903108.

    Article  CAS  Google Scholar 

  30. Bu, T. L.; Li, J.; Zheng, F.; Chen, W. J.; Wen, X. M.; Ku, Z. L.; Peng, Y.; Zhong, J.; Cheng, Y. B.; Huang, F. Z. Universal passivation strategy to slot-die printed SnO2 for hysteresis-free efficient flexible perovskite solar module. Nat. Commun. 2018, 9, 4609.

    Article  Google Scholar 

  31. Li, J. Q.; Bade, S. G. R.; Shan, X.; Yu, Z. B. Single-layer light-emitting diodes using organometal halide perovskite/poly(ethylene oxide) composite thin films. Adv. Mater. 2015, 27, 5196–5202.

    Article  CAS  Google Scholar 

  32. Jeong, B.; Han, H.; Choi, Y. J.; Cho, S. H.; Kim, E. H.; Lee, S. W.; Kim, J. S.; Park, C.; Kim, D.; Park, C. All-inorganic CsPbI3 perovskite phase-stabilized by poly(ethylene oxide) for red-light-emitting diodes. Adv. Funct. Mater. 2018, 28, 1706401.

    Article  Google Scholar 

  33. Ling, Y. C.; Tian, Y.; Wang, X.; Wang, J. C.; Knox, J. M.; Perez-Orive, F.; Du, Y. J.; Tan, L.; Hanson, K.; Ma, B. W. et al. Enhanced optical and electrical properties of polymer-assisted all-inorganic perovskites for light-emitting diodes. Adv. Mater. 2016, 28, 8983–8989.

    Article  CAS  Google Scholar 

  34. Tian, Y.; Zhou, C. K.; Worku, M.; Wang, X.; Ling, Y. C.; Gao, H. W.; Zhou, Y.; Miao, Y.; Guan, J. J.; Ma, B. W. Highly efficient spectrally stable red perovskite light-emitting diodes. Adv. Mater. 2018, 30, 1707093.

    Article  Google Scholar 

  35. Saidaminov, M. I.; Abdelhady, A. L.; Murali, B.; Alarousu, E.; Burlakov, V. M.; Peng, W.; Dursun, I.; Wang, L. F.; He, Y.; Maculan, G. et al. High-quality bulk hybrid perovskite single crystals within minutes by inverse temperature crystallization. Nat. Commun. 2015, 6, 7586.

    Article  Google Scholar 

  36. Eggers, H.; Schackmar, F.; Abzieher, T.; Sun, Q.; Lemmer, U.; Vaynzof, Y.; Richards, B. S.; Hernandez-Sosa, G.; Paetzold, U. W. Inkjet-printed micrometer-thick perovskite solar cells with large columnar grains. Adv. Energy Mater. 2020, 10, 1903184.

    Article  CAS  Google Scholar 

  37. Barabási, A. L.; Stanley, H. E. Fractal Concepts in Surface Growth; Press Syndicate of the University of Cambridge: New York, 1995.

    Book  Google Scholar 

  38. Chang, Y. H.; Ku, C. W.; Zhang, Y. H.; Wang, H. C.; Chen, J. Y. Ultrafast responsive non-volatile flash photomemory via spatially addressable perovskite/block copolymer composite film. Adv. Funct. Mater. 2020, 30, 2000764.

    Article  CAS  Google Scholar 

  39. Ge, F.; Wang, X. H.; Zhang, Y. F.; Song, E.; Zhang, G. B.; Lu, H. B.; Cho, K.; Qiu, L. Z. Modulating the surface via polymer brush for high-performance inkjet-printed organic thin-film transistors. Adv. Electron. Mater. 2017, 3, 1600402.

    Article  Google Scholar 

  40. Hu, X. T.; Huang, Z. Q.; Li, F. Y.; Su, M.; Huang, Z. D.; Zhao, Z. P.; Cai, Z. R.; Yang, X.; Meng, X. C.; Li, P. W. et al. Nacre-inspired crystallization and elastic “brick-and-mortar” structure for a wearable perovskite solar module. Energy Environ. Sci. 2019, 12, 979–987.

    Article  CAS  Google Scholar 

  41. Song, J. Z.; Xu, L. M.; Li, J. H.; Xue, J.; Dong, Y. H.; Li, X. M.; Zeng, H. B. Monolayer and few-layer all-inorganic perovskites as a new family of two-dimensional semiconductors for printable optoelectronic devices. Adv. Mater. 2016, 28, 4861–4869.

    Article  CAS  Google Scholar 

  42. Cao, F. R.; Tian, W.; Meng, L. X.; Wang, M.; Li, L. Ultrahighperformance flexible and self-powered photodetectors with ferroelectric P(VDF-TrFE)/perovskite bulk heterojunction. Adv. Funct. Mater. 2019, 29, 1808415.

    Article  Google Scholar 

  43. Bade, S. G. R.; Shan, X.; Hoang, P. T.; Li, J. Q.; Geske, T.; Cai, L.; Pei, Q. B.; Wang, C.; Yu, Z. B. Stretchable light-emitting diodes with organometal-halide-perovskite-polymer composite emitters. Adv. Mater. 2017, 29, 1607053.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported financially by the National Key R&D Program of China (Nos. 2018YFA0208501 and 2018YFA0703200), the National Natural Science Foundation of China (NSFC, Nos. 91963212, 51773206, 21875260 and 51961145102 [BRICS project]), K. C. Wong Education Foundation, Beijing Nature Science Foundation (No. 2202069), Beijing National Laboratory for Molecular Sciences (No. BNLMS-CXXM-202005), Key R&D and Promotion Project of Henan Province (No. 192102210032), Open Project of State Key Laboratory of Silicon Materials (No. SKL2019-10), and Outstanding Young Talent Research Fund of Zhengzhou University. The authors also thank China Science and Technology Cloud and the Advanced Analysis & Computation Center at Zhengzhou University for materials and device characterization support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lihong Li, Yiqiang Zhang or Yanlin Song.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, Z., Wang, Y., Wang, S. et al. Controllable printing of large-scale compact perovskite films for flexible photodetectors. Nano Res. 15, 1547–1553 (2022). https://doi.org/10.1007/s12274-021-3700-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3700-9

Keywords