Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Self-assembly nanomicelle-microneedle patches with enhanced tumor penetration for superior chemo-photothermal therapy

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Nanomedicine with high specificity has been a promising tool for cancer diagnosis and therapy. However, the successful application of nanoparticle-based superficial cancer therapy is severely hindered by restricted deep tumor tissue accumulation and penetration. Herein, a self-assembly nanomicelle dissolving microneedle (DMN) patch according to the “nano in micro” strategy was conducted to co-deliver a first-line chemotherapeutic agent paclitaxel (PTX), and a photosensitizer IR780 (PTX/IR780-NMs @DMNs) for chemo-photothermal synergetic melanoma therapy. Upon direct insertion into the tumor site, DMNs created a regular and multipoint three-dimensional drug depot to maximize the tumor accumulation. Accompanied by the DMN dissolution, the composition of the needle matrixes self-assembled into nanomicelles, which could efficiently penetrate deep tumor tissue. Upon laser irradiation, the nanomicelles could not only ablate tumor cells directly by photothermal conversion but also trigger PTX release to induce tumor cell apoptosis. In vivo results showed that compared with intravenous injection, IR780 delivered by PTX/IR780-NMs @DMNs was almost completely accumulated at the tumor site. The antitumor results revealed that the PTX/IR780-NMs @DMNs could effectively eliminate tumors with an 88% curable rate without any damage to normal tissues. This work provides a versatile and generalizable framework for designing self-assembly DMN-mediated combination therapy to fight against superficial cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pires, L. R.; Gaspar, J. Micro and nano-needles as innovative approach in nanomedicine. In Nanostructured Biomaterials for Regenerative Medicine. Guarino, V; Iafisco, M; Spriano, S., Eds.; Woodhead Publishing Ltd: Oxford, 2020; pp 379–406.

    Chapter  Google Scholar 

  2. Yuan, A.; Qiu, X. F.; Tang, X. L.; Liu, W.; Wu, J. H.; Hu, Y. Q. Self-assembled PEG-IR-780-C13 micelle as a targeting, safe and highly-effective photothermal agent for in vivo imaging and cancer therapy. Biomaterials 2015, 51, 184–193.

    Article  CAS  Google Scholar 

  3. Shu, M.; Tang, J. J.; Chen, L. L.; Zeng, Q.; Li, C.; Xiao, S. T.; Jiang, Z. Z.; Liu, J. Tumor microenvironment triple-responsive nanoparticles enable enhanced tumor penetration and synergetic chemo-photodynamic therapy. Biomaterials 2020, 268, 120574.

    Article  Google Scholar 

  4. Zhang, Y. R.; Lin, R.; Li, H. J.; He, W. L.; Du, J. Z.; Wang, J. Strategies to improve tumor penetration of nanomedicines through nanoparticle design. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2019, 11, e1519.

    Article  Google Scholar 

  5. Cong, Z. Q.; Zhang, L.; Ma, S. Q.; Lam, K. S.; Yang, F. F.; Liao, Y. H. Size-transformable hyaluronan stacked self-assembling peptide nanoparticles for improved transcellular tumor penetration and photochemo combination therapy. ACS Nano 2020, 14, 1958–1970.

    Article  CAS  Google Scholar 

  6. Cong, Z. Q.; Yang, F. F.; Cao, L.; Wen, H.; Fu, T. T.; Ma, S. Q.; Liu, C. Y.; Quan, L. H.; Liao, Y. H. Multispectral optoacoustic tomography (MSOT) for imaging the particle size-dependent intratumoral distribution of polymeric micelles. Int. J. Nanomedicine 2018, 13, 8549–8560.

    Article  CAS  Google Scholar 

  7. Chen, H. M.; Zhang, W. Z.; Zhu, G. Z.; Xie, J.; Chen, X. Y. Rethinking cancer nanotheranostics. Nat. Rev. Mater. 2017, 2, 17024.

    Article  CAS  Google Scholar 

  8. Jiang, T. Y.; Wang, T.; Li, T.; Ma, Y. D.; Shen, S. Y.; He, B. F.; Mo, R. Enhanced transdermal drug delivery by transfersome-embedded oligopeptide hydrogel for topical chemotherapy of melanoma. ACS Nano 2018, 12, 9693–9701.

    Article  CAS  Google Scholar 

  9. Kim, N. W.; Kim, S. Y.; Lee, J. E.; Yin, Y.; Lee, J. H.; Lim, S. Y.; Kim, E. S.; Duong, H. T. T.; Kim, H. K.; Kim, S. et al. Enhanced cancer vaccination by in situ nanomicelle-generating dissolving microneedles. ACS Nano 2018, 12, 9702–9713.

    Article  CAS  Google Scholar 

  10. Pei, P.; Yang, F.; Liu, J. X.; Hu, H. R.; Du, X. Y.; Hanagata, N.; Zhao, S. C.; Zhu, Y. F. Composite-dissolving microneedle patches for chemotherapy and photothermal therapy in superficial tumor treatment. Biomater. Sci. 2018, 6, 1414–1423.

    Article  CAS  Google Scholar 

  11. Boopathy, A. V.; Mandal, A.; Kulp, D. W.; Menis, S.; Bennett, N. R.; Watkins, H. C.; Wang, W. D.; Martin, J. T.; Thai, N. T.; He, Y. P. et al. Enhancing humoral immunity via sustained-release implantable microneedle patch vaccination. Proc. Natl. Acad. Sci. USA 2019, 116, 16473–16478.

    Article  CAS  Google Scholar 

  12. Waghule, T.; Singhvi, G.; Dubey, S. K.; Pandey, M. M.; Gupta, G.; Singh, M.; Dua, K. Microneedles: A smart approach and increasing potential for transdermal drug delivery system. Biomed. Pharmacother. 2019, 109, 1249–1258.

    Article  CAS  Google Scholar 

  13. Li, W. T.; Peng, J. R.; Yang, Q.; Chen, L. J.; Zhang, L.; Chen, X. X.; Qian, Z. Y. α-Lipoic acid stabilized DTX/IR780 micelles for photoacoustic/fluorescence imaging guided photothermal therapy/chemotherapy of breast cancer. Biomater. Sci. 2018, 6, 1201–1216.

    Article  CAS  Google Scholar 

  14. Deng, Y. Y.; Käfer, F.; Chen, T. T.; Jin, Q.; Ji, J.; Agarwal, S. Let there be light: Polymeric micelles with upper critical solution temperature as light-triggered heat nanogenerators for combating drug-resistant cancer. Small 2018, 14, 1802420.

    Article  Google Scholar 

  15. DeMuth, P. C.; Min, Y.; Irvine, D. J.; Hammond, P. T. Implantable silk composite microneedles for programmable vaccine release kinetics and enhanced immunogenicity in transcutaneous immunization. Adv. Healthc. Mater. 2014, 3, 47–58.

    Article  CAS  Google Scholar 

  16. DeMuth, P. C.; Moon, J. J.; Suh, H.; Hammond, P. T.; Irvine, D. J. Releasable layer-by-layer assembly of stabilized lipid nanocapsules on microneedles for enhanced transcutaneous vaccine delivery. ACS Nano 2012, 6, 8041–8051.

    Article  CAS  Google Scholar 

  17. Chen, C. H.; Shyu, V. B. H.; Chen, C. T. Dissolving microneedle patches for transdermal insulin delivery in diabetic mice: Potential for clinical applications. Materials (Basel) 2018, 611, 1625.

    Article  Google Scholar 

  18. Chen, G. J.; Yu, J. C.; Gu, Z. Glucose-responsive microneedle patches for diabetes treatment. J. Diabetes Sci. Technol. 2019, 13, 41–48.

    Article  Google Scholar 

  19. Lee, I. C.; Lin, W. M.; Shu, J. C.; Tsai, S. W.; Chen, C. H.; Tsai, M. T. Formulation of two-layer dissolving polymeric microneedle patches for insulin transdermal delivery in diabetic mice. J. Biomed. Mater. Res. Part A 2017, 105, 84–93.

    Article  CAS  Google Scholar 

  20. Tham, H. P.; Xu, K. M.; Lim, W. Q.; Chen, H. Z.; Zheng, M. J.; Thng, T. G. S.; Venkatraman, S. S.; Xu, C. J.; Zhao, Y. L. Microneedle-assisted topical delivery of photodynamically active mesoporous formulation for combination therapy of deep-seated melanoma. ACS Nano 2018, 12, 11936–11948.

    Article  CAS  Google Scholar 

  21. Yang, P. P.; Lu, C.; Qin, W. B.; Chen, M. L.; Quan, G. L.; Liu, H.; Wang, L. L.; Bai, X. Q.; Pan, X.; Wu, C. B. Construction of a core-shell microneedle system to achieve targeted co-delivery of checkpoint inhibitors for melanoma immunotherapy. Acta Biomater. 2020, 104, 147–157.

    Article  CAS  Google Scholar 

  22. Wu, B. Y.; Fu, J. T.; Zhou, Y. X.; Luo, S. L.; Zhao, Y. T.; Quan, G. L.; Pan, X.; Wu, C. B. Tailored core-shell dual metal-organic frameworks as a versatile nanomotor for effective synergistic antitumor therapy. Acta Pharm. Sin. B 2020, 10, 2198–2211.

    Article  CAS  Google Scholar 

  23. Wang, B.; Wu, S.; Lin, Z.; Jiang, Y.; Chen, Y.; Chen, Z. S.; Yang, X.; Gao, W. A personalized and long-acting local therapeutic platform combining photothermal therapy and chemotherapy for the treatment of multidrug-resistant colon tumor. Int. J. Nanomedicine 2018, 13, 8411–8427.

    Article  CAS  Google Scholar 

  24. Moreira, A. F.; Rodrigues, C. F.; Jacinto, T. A.; Miguel, S. P.; Costa, E. C.; Correia, I. J. Poly(vinyl alcohol)/chitosan layer-by-layer microneedles for cancer chemo-photothermal therapy. Int. J. Pharm. 2020, 576, 118907.

    Article  CAS  Google Scholar 

  25. Yuan, X.; Yin, Y. L.; Zan, W.; Sun, X. Y.; Yang, Q. Hybrid manganese dioxide-bovine serum albumin nanostructure incorporated with doxorubicin and IR780 for enhanced breast cancer chemo-photothermal therapy. Drug Deliv. 2019, 26, 1254–1264.

    Article  CAS  Google Scholar 

  26. Zhang, L. H.; Qin, Y.; Zhang, Z. M.; Fan, F.; Huang, C. L.; Lu, L.; Wang, H.; Jin, X.; Zhao, H. X.; Kong, D. L. et al. Dual pH/reduction-responsive hybrid polymeric micelles for targeted chemo-photothermal combination therapy. Acta Biomater. 2018, 75, 371–385.

    Article  CAS  Google Scholar 

  27. Qin, W. B.; Quan, G. L.; Sun, Y.; Chen, M. L.; Yang, P. P.; Feng, D. S.; Wen, T.; Hu, X. Y.; Pan, X.; Wu, C. B. Dissolving microneedles with spatiotemporally controlled pulsatile release nanosystem for synergistic chemo-photothermal therapy of melanoma. Theranostics 2020, 10, 8179–8196.

    Article  CAS  Google Scholar 

  28. Zhao, D. J.; Zhang, H. Y.; Yang, S. F.; He, W. X.; Luan, Y. X. Redox-sensitive mPEG-SS-PTX/TPGS mixed micelles: An efficient drug delivery system for overcoming multidrug resistance. Int. J. Pharm. 2016, 515, 281–292.

    Article  CAS  Google Scholar 

  29. Alves, C. G.; Lima-Sousa, R.; de Melo-Diogo, D.; Louro, R. O.; Correia, I. J. IR780 based nanomaterials for cancer imaging and photothermal, photodynamic and combinatorial therapies. Int. J. Pharm. 2018, 542, 164–175.

    Article  CAS  Google Scholar 

  30. Bernabeu, E.; Gonzalez, L.; Cagel, M.; Gergic, E. P.; Moretton, M. A.; Chiappetta, D. A. Novel Soluplus®-TPGS mixed micelles for encapsulation of paclitaxel with enhanced in vitro cytotoxicity on breast and ovarian cancer cell lines. Colloids Surf. B: Biointerfaces 2016, 140, 403–411.

    Article  CAS  Google Scholar 

  31. Jin, X.; Zhou, B.; Xue, L. Z.; San, W. G. Soluplus® micelles as a potential drug delivery system for reversal of resistant tumor. Biomed. Pharmacother. 2015, 69, 388–395.

    Article  CAS  Google Scholar 

  32. Pinto, J. M. O.; Rengifo, A. F. C.; Mendes, C.; Leão, A. F.; Parize, A. L.; Stulzer, H. K. Understanding the interaction between Soluplus®and biorelevant media components. Colloids Surf. B: Biointerfaces 2020, 187, 110673.

    Article  CAS  Google Scholar 

  33. Zhu, C. L.; Gong, S.; Ding, J. S.; Yu, M. R.; Ahmad, E.; Feng, Y.; Gan, Y. Supersaturated polymeric micelles for oral silybin delivery: The role of the Soluplus-PVPVA complex. Acta Pharm. Sin. B 2019, 9, 107–117.

    Article  Google Scholar 

  34. Chen, M. L.; Yang, D.; Sun, Y.; Liu, T.; Wang, W. H.; Fu, J. T.; Wang, Q. Q.; Bai, X. Q.; Quan, G. L.; Pan, X.; Wu, C. B. In situ self-assembly nanomicelle microneedles for enhanced photoimmunotherapy via autophagy regulation strategy. ACS Nano 2021, 15, 3387–3401.

    Article  CAS  Google Scholar 

  35. Tang, H. M.; Kobayashi, H.; Niidome, Y.; Mori, T.; Katayama, Y.; Niidome, T. CW/pulsed NIR irradiation of gold nanorods: Effect on transdermal protein delivery mediated by photothermal ablation. J. Control. Release 2013, 171, 178–183.

    Article  CAS  Google Scholar 

  36. Pais-Silva, C.; de Melo-Diogo, D.; Correia, I. J. IR780-loaded TPGS-TOS micelles for breast cancer photodynamic therapy. Eur. J. Pharm. Biopharm. 2017, 113, 108–117.

    Article  CAS  Google Scholar 

  37. Jiang, C. X.; Cheng, H.; Yuan, A. H.; Tang, X. L.; Wu, J. H.; Hu, Y. Q. Hydrophobic IR780 encapsulated in biodegradable human serum albumin nanoparticles for photothermal and photodynamic therapy. Acta Biomater. 2015, 14, 61–69.

    Article  CAS  Google Scholar 

  38. Tan, Y. N.; Zhu, Y.; Wen, L. J.; Yang, X. Q.; Liu, X.; Meng, T. T.; Dai, S. H.; Ping, Y.; Yuan, H.; Hu, F. Q. Mitochondria-responsive drug release along with heat shock mediated by multifunctional glycolipid micelles for precise cancer chemo-phototherapy. Theranostics 2019, 9, 691–707.

    Article  CAS  Google Scholar 

  39. Burke, P. J. Mitochondria, bioenergetics and apoptosis in cancer. Trends Cancer 2017, 3, 857–870.

    Article  CAS  Google Scholar 

  40. Zhang, J. F.; Fang, F.; Liu, B.; Tan, J. H.; Chen, W. C.; Zhu, Z. L.; Yuan, Y.; Wan, Y. P.; Cui, X.; Li, S. L. et al. Intrinsically cancer-mitochondria-targeted thermally activated delayed fluorescence nanoparticles for two-photon-activated fluorescence imaging and photodynamic therapy. ACS Appl. Mater. Interfaces 2019, 11, 41051–41061.

    Article  CAS  Google Scholar 

  41. Lin, S. Q.; Quan, G. L.; Hou, A. L.; Yang, P. P.; Peng, T. T.; Gu, Y. K.; Qin, W. B.; Liu, R. B.; Ma, X. Y.; Pan, X. et al. Strategy for hypertrophic SCAR therapy: Improved delivery of triamcinolone acetonide using mechanically robust tip-concentrated dissolving microneedle array. J. Control. Release 2019, 306, 69–82.

    Article  CAS  Google Scholar 

  42. Coral, D. F.; Soto, P. A.; Blank, V.; Veiga, A.; Spinelli, E.; Gonzalez, S.; Saracco, G. P.; Bab, M. A.; Muraca, D.; Setton-Avruj, P. C. et al. Nanoclusters of crystallographically aligned nanoparticles for magnetic thermotherapy: Aqueous ferrofluid, agarose phantoms and ex vivo melanoma tumour assessment. Nanoscale 2018, 10, 21262–21274.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 81803466), the Key Areas Research and Development Program of Guangdong Province (No. 2019B020204002), and the Natural Science Foundation of Guangdong Province (No. 2021A1515012525).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guilan Quan or Xin Pan.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Y., Chen, M., Yang, D. et al. Self-assembly nanomicelle-microneedle patches with enhanced tumor penetration for superior chemo-photothermal therapy. Nano Res. 15, 2335–2346 (2022). https://doi.org/10.1007/s12274-021-3817-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3817-x

Keywords