Abstract
Chemical and biological sensing play important roles in healthcare, environmental science, food-safety tests, and medical applications. Flexible organic electrochemical transistors (OECTs) have shown great promise in the field of chemical and biological sensing, owing to their superior sensitivity, high biocompatibility, low cost, and light weight. Herein, we summarize recent progress in the fabrication of flexible OECTs and their applications in chemical and biological sensing. We start with a brief introduction to the working principle, configuration, and sensing mechanism of the flexible OECT-based sensors. Then, we focus on the fabrication of flexible OECT-based sensors, including material selection and structural engineering of the components in OECTs: the substrate, electrodes, electrolyte, and channel. Particularly, the gate modification is discussed extensively. Then, the applications of OECT-based sensors in chemical and biological sensing are reviewed in detail. Especially, the array-based and integrated OECT sensors are also introduced. Finally, we present the conclusions and remaining challenges in the field of flexible OECT-based sensing. Our timely review will deepen the understanding of the flexible OECT-based sensors and promote the further development of the fast-growing field of flexible sensing.
Similar content being viewed by others
References
Ling, Y.; An, T. C.; Yap, L. W.; Zhu, B. W.; Gong, S.; Cheng, W. L. Disruptive, soft, wearable sensors. Adv. Mater. 2020, 32, 1904664.
Iqbal, S. M. A.; Mahgoub, I.; Du, E.; Leavitt, M. A.; Asghar, W. Advances in healthcare wearable devices. npj Flex. Electron. 2021, 5, 9.
Han, Y. J.; Han, Y. F.; Zhang, X. P.; Li, L.; Zhang, C. W.; Liu, J. H.; Lu, G.; Yu, H. D.; Huang, W. Fish gelatin based triboelectric nanogenerator for harvesting biomechanical energy and self-powered sensing of human physiological signals. ACS Appl. Mater. Interfaces 2020, 12, 16442–16450.
Gao, L.; Zhu, C. X.; Li, L.; Zhang, C. W.; Liu, J. H.; Yu, H. D.; Huang, W. All paper-based flexible and wearable piezoresistive pressure sensor. ACS Appl. Mater. Interfaces 2019, 11, 25034–25042.
White, H. S.; Kittlesen, G. P.; Wrighton, M. S. Chemical derivatization of an array of three gold microelectrodes with polypyrrole: fabrication of a molecule-based transistor. J. Am. Chem. Soc. 1984, 106, 5375–5377.
Mannerbro, R.; Ranlöf, M.; Robinson, N.; Forchheimer, R. Inkjet printed electrochemical organic electronics. Synth. Met. 2008, 158, 556–560.
Shim, N. Y.; Bernards, D. A.; Macaya, D. J.; DeFranco, J. A.; Nikolou, M.; Owens, R. M.; Malliaras, G. G. All-plastic electrochemical transistor for glucose sensing using a ferrocene mediator. Sensors 2009, 9, 9896–9902.
Jiang, C.; Wang, G. X.; Hein, R.; Liu, N. Z.; Luo, X. L.; Davis, J. J. Antifouling strategies for selective in vitro and in vivo sensing. Chem. Rev. 2020, 120, 3852–3889.
Kim, J.; Campbell, A. S.; de Ávila, B. E. F.; Wang, J. Wearable biosensors for healthcare monitoring. Nat. Biotechnol. 2019, 37, 389–406.
Braendlein, M.; Lonjaret, T.; Leleux, P.; Badier, J. M.; Malliaras, G. G. Voltage amplifier based on organic electrochemical transistor. Adv. Sci. 2017, 4, 1600247.
Ghittorelli, M.; Lingstedt, L.; Romele, P.; Crăciun, N. I.; Kovács-Vajna, Z. M.; Blom, P. W. M.; Torricelli, F. High-sensitivity ion detection at low voltages with current-driven organic electrochemical transistors. Nat. Commun. 2018, 9, 1441.
Brange, F.; Schmidt, A.; Bayer, J. C.; Wagner, T.; Flindt, C.; Haug, R. J. Controlled emission time statistics of a dynamic single-electron transistor. Sci. Adv. 2021, 7, eabe0793.
Pitsalidis, C.; Ferro, M. P.; Iandolo, D.; Tzounis, L.; Inal, S.; Owens, R. M. Transistor in a tube: A route to three-dimensional bioelectronics. Sci. Adv. 2018, 4, eaat4253.
Li, H.; Shi, W.; Song, J.; Jang, H. J.; Dailey, J.; Yu, J. S.; Katz, H. E. Chemical and biomolecule sensing with organic field-effect transistors. Chem. Rev. 2019, 119, 3–35.
Contat-Rodrigo, L.; Pérez-Fuster, C.; Lidón-Roger, J.; Bonfiglio, A.; García-Breijo, E. Characterization of screen-printed organic electrochemical transistors to detect cations of different sizes. Sensors 2016, 16, 1599.
Spyropoulos, G. D.; Gelinas, J. N.; Khodagholy, D. Internal ion-gated organic electrochemical transistor: A building block for integrated bioelectronics. Sci. Adv. 2019, 5, eaau7378.
Koklu, A.; Wustoni, S.; Musteata, V. E.; Ohayon, D.; Moser, M.; McCulloch, I.; Nunes, S. P.; Inal, S. Microfluidic integrated organic electrochemical transistor with a nanoporous membrane for amyloid-β detection. ACS Nano 2021, 15, 8130–8141.
Wang, Y. D.; Zhou, Z.; Qing, X.; Zhong, W. B.; Liu, Q. Z.; Wang, W. W.; Li, M. F.; Liu, K.; Wang, D. Ion sensors based on novel fiber organic electrochemical transistors for lead ion detection. Anal. Bioanal. Chem. 2016, 408, 5779–5787.
Braendlein, M.; Pappa, A. M.; Ferro, M.; Lopresti, A.; Acquaviva, C.; Mamessier, E.; Malliaras, G. G.; Owens, R. M. Lactate detection in tumor cell cultures using organic transistor circuits. Adv. Mater. 2017, 29, 1605744.
Khodagholy, D.; Curto, V. F.; Fraser, K. J.; Gurfinkel, M.; Byrne, R.; Diamond, D.; Malliaras, G. G.; Benito-Lopez, F.; Owens, R. M. Organic electrochemical transistor incorporating an ionogel as a solid state electrolyte for lactate sensing. J. Mater. Chem. 2010, 22, 4440–4443.
Bernards, D. A.; Macaya, D. J.; Nikolou, M.; DeFranco, J. A.; Takamatsu, S.; Malliaras, G. G. Enzymatic sensing with organic electrochemical transistors. J. Mater. Chem. 2008, 18, 116–120.
Tang, H.; Lin, P.; Chan, H. L. W.; Yan, F. Highly sensitive dopamine biosensors based on organic electrochemical transistors. Biosens. Bioelectron. 2011, 26, 4559–4563.
Lin, P.; Luo, X. T.; Hsing, I. M.; Yan, F. Organic electrochemical transistors integrated in flexible microfluidic systems and used for label-free DNA sensing. Adv. Mater. 2011, 23, 4035–4040.
He, R. X.; Zhang, M.; Tan, F.; Leung, P. H. M.; Zhao, X. Z.; Chan, H. L. W.; Yang, M.; Yan, F. Detection of bacteria with organic electrochemical transistors. J. Mater. Chem. 2010, 22, 22072–22076.
Lingstedt, L. V.; Ghittorelli, M.; Brückner, M.; Reinholz, J.; Crăciun, N. I.; Torricelli, F.; Mäilander, V.; Gkoupidenis, P.; Blom, P. W. M. Monitoring of cell layer integrity with a current-driven organic electrochemical transistor. Adv. Healthc. Mater. 2019, 8, 1900128.
Liu, Y. X.; Dong, X. C.; Chen, P. Biological and chemical sensors based on graphene materials. Chem. Soc. Rev. 2012, 41, 2283–2307.
Rivnay, J.; Inal, S.; Salleo, A.; Owens, R. M.; Berggren, M.; Malliaras, G. G. Organic electrochemical transistors. Nat. Rev. Mater. 2018, 3, 17086.
Bernards, D. A.; Malliaras, G. G. Steady-state and transient behavior of organic electrochemical transistors. Adv. Funct. Mater. 2007, 17, 3538–3544.
Friedlein, J. T.; McLeod, R. R.; Rivnay, J. Device physics of organic electrochemical transistors. Org. Electron. 2018, 33, 398–414.
Donahue, M. J.; Williamson, A.; Strakosas, X.; Friedlein, J. T.; Mcleod, R. R.; Gleskova, H.; Malliaras, G. G. High-performance vertical organic electrochemical transistors. Adv. Mater. 2018, 30, 1705031.
Rivnay, J.; Leleux, P.; Ferro, M.; Sessolo, M.; Williamson, A.; Koutsouras D. A.; Khodagholy D.; Ramuz M.; Strakosas X.; Owens R. M. et al. High-performance transistors for bioelectronics through tuning of channel thickness. Sci. Adv. 2015, 1, e1400251.
Inal, S.; Malliaras, G. G.; Rivnay, J. Benchmarking organic mixed conductors for transistors. Nat. Commun. 2017, 8, 1767.
Yin, Z. Y.; Tordjman, M.; Lee, Y.; Vardi, A.; Kalish, R.; del Alamo, J. A. Enhanced transport in transistor by tuning transition-metal oxide electronic states interfaced with diamond. Sci. Adv. 2018, 4, eaau0480.
Mamo, M. D.; Shin, E. S.; Noh, Y. Y. Self-aligned patterning of conductive films on plastic substrates for electrodes of flexible electronics. J. Mater. Chem. C 2017, 5, 10900–10906.
Takamatsu, S.; Lonjaret, T.; Ismailova, E.; Masuda, A.; Itoh, T.; Malliaras, G. G. Wearable keyboard using conducting polymer electrodes on textiles. Adv. Mater. 2016, 28, 4485–4488.
Zhang, N.; Hu, Y. S.; Liu, X. Y. Transparent organic thin film transistors with WO3/Ag/WO3 source-drain electrodes fabricated by thermal evaporation. Appl. Phys. Lett. 2013, 103, 033301.
Zhang, S. M.; Hubis, E.; Tomasello, G.; Soliveri, G.; Kumar, P.; Cicoira, F. Patterning of stretchable organic electrochemical transistors. Chem. Mater. 2017, 29, 3126–3132.
Hong, J. Y.; Kim, W.; Choi, D.; Kong, J.; Park, H. S. Omnidirectionally stretchable and transparent graphene electrodes. ACS Nano 2016, 10, 9446–9455.
He, Q. Y.; Wu, S. X.; Gao, S.; Cao, X. H.; Yin, Z. Y.; Li, H.; Chen, P.; Zhang, H. Transparent, flexible, all-reduced graphene oxide thin film transistors. ACS Nano 2011, 5, 5038–5044.
Lipomi, D. J.; Vosgueritchian, M.; Tee, B. C. K.; Hellstrom, S. L.; Lee, J. A.; Fox, C. H.; Bao, Z. N. Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes. Nat. Nanotechnol. 2011, 6, 788–792.
Kergoat, L.; Piro, B.; Berggren, M.; Horowitz, G.; Pham, M. C. Advances in organic transistor-based biosensors: From organic electrochemical transistors to electrolyte-gated organic field-effect transistors. Anal. Bioanal. Chem. 2012, 402, 1813–1826.
Yan, Y. J.; Chen, Q. Z.; Wu, X. M.; Wang, X. M.; Li, E. L.; Ke, Y. D.; Liu, Y.; Chen, H. P.; Guo, T. L. High-performance organic electrochemical transistors with nanoscale channel length and their application to artificial synapse. ACS Appl. Mater. Interfaces 2020, 12, 49915–49925.
Tarabella, G.; Villani, M.; Calestani, D.; Mosca, R.; Iannotta, S.; Zappettini, A.; Coppedè, N. A single cotton fiber organic electrochemical transistor for liquid electrolyte saline sensing. J. Mater. Chem. 2012, 22, 23830–23834.
Wu, X. Y.; Feng, J. Y.; Deng, J.; Cui, Z. C.; Wang, L. Y.; Xie, S. L.; Chen, C. R.; Tang, C. Q.; Han, Z. Q.; Yu, H. B. et al. Fiber-shaped organic electrochemical transistors for biochemical detections with high sensitivity and stability. Sci. China Chem. 2020, 63, 1281–1288.
Wang, Y. D.; Qing, X.; Zhou, Q.; Zhang, Y.; Liu, Q. Z.; Liu, K.; Wang, W. W.; Li, M. F.; Lu, Z. T.; Chen, Y. L. et al. The woven fiber organic electrochemical transistors based on polypyrrole nanowires/reduced graphene oxide composites for glucose sensing. Biosens. Bioelectron. 2017, 95, 138–145.
Müller, C.; Hamedi, M.; Karlsson, R.; Jansson, R.; Marcilla, R.; Hedhammar, M.; Inganäs, O. Woven electrochemical transistors on silk fibers. Adv. Mater. 2011, 23, 898–901.
Kim, Y.; Lim, T.; Kim, C. H.; Yeo, C. S.; Seo, K.; Kim, S. M.; Kim, J.; Park, S. Y.; Ju, S.; Yoon, M. H. Organic electrochemical transistor-based channel dimension-independent single-strand wearable sweat sensors. NPG Asia Mater. 2018, 10, 1086–1095.
Salyk, O.; Viteček, J.; Omasta, L.; Šafaříková, E.; Střiteský, S.; Vala, M.; Weiter, M. Organic electrochemical transistor microplate for real-time cell culture monitoring. Appl. Sci. 2017, 7, 998.
Zhang, M.; Lin, P.; Yang, M.; Yan, F. Fabrication of organic electrochemical transistor arrays for biosensing. Biochim. Biophys. Acta-(BBA)-Gen. Subj. 2013, 1830, 4402–4406.
Zhang, L. J.; Wang, G. H.; Wu, D.; Xiong, C.; Zheng, L.; Ding, Y. S.; Lu, H. B.; Zhang, G. B.; Qiu, L. Z. Highly selective and sensitive sensor based on an organic electrochemical transistor for the detection of ascorbic acid. Biosens. Bioelectron. 2018, 100, 235–241.
Qing, X.; Wang, Y. D.; Zhang, Y.; Ding, X. C.; Zhong, W. B.; Wang, D.; Wang, W. W.; Liu, Q. Z.; Liu, K.; Li, M. F. et al. Wearable fiber-based organic electrochemical transistors as a platform for highly sensitive dopamine monitoring. ACS Appl. Mater. Interfaces 2019, 11, 13105–13113.
Bai, L. M.; Elósegui, C. G.; Li, W. Q.; Yu, P.; Fei, J. J.; Mao, L. Q. Biological applications of organic electrochemical transistors: Electrochemical biosensors and electrophysiology recording. Front. Chem. 2019, 7, 313.
Tang, H.; Yan, F.; Lin, P.; Xu, J. B.; Chan, H. L. W. Highly sensitive glucose biosensors based on organic electrochemical transistors using platinum gate electrodes modified with enzyme and nanomaterials. Adv. Funct. Mater. 2011, 21, 2264–2272.
Hwang, D. W.; Lee, S.; Seo, M.; Chung, T. D. Recent advances in electrochemical non-enzymatic glucose sensors-a review. Anal. Chim. Acta 2018, 1033, 1–34.
Nag, A.; Mukhopadhyay, S. C.; Kosel, J. Wearable flexible sensors: A review. IEEE Sens. J. 2017, 17, 3949–3960.
Li, D. H.; Wang, L.; Ji, W. H.; Wang, H. C.; Yue, X. P.; Sun, Q. Z.; Li, L.; Zhang, C. W.; Liu, J. H.; Lu, G. et al. Embedding silver nanowires into a hydroxypropyl methyl cellulose Film for flexible electrochromic devices with high electromechanical stability. ACS Appl. Mater. Interfaces 2021, 13, 1735–1742.
Zeglio, E.; Inganäs, O. Active materials for organic electrochemical transistors. Adv. Mater. 2018, 30, 1800941.
Sun, H. D.; Gerasimov, J.; Berggren, M.; Fabiano, S. n-Type organic electrochemical transistors: Materials and challenges. J. Mater. Chem. C 2018, 6, 11778–11784.
Li, Y. Z.; Wang, N. X.; Yang, A. N.; Ling, H. F.; Yan, F. Biomimicking stretchable organic electrochemical transistor. Adv. Electron. Mater. 2019, 5, 1900566.
Zhang, D. H.; Ryu, K.; Liu, X. L.; Polikarpov, E.; Ly, J.; Tompson, M. E.; Zhou, C. W. Transparent, conductive, and flexible carbon nanotube films and their application in organic light-emitting diodes. Nano Lett. 2006, 6, 1880–1886.
Shi, W.; Guo, Y. L.; Liu, Y. Q. When flexible organic field-effect transistors meet biomimetics: A prospective view of the internet of things. Adv. Mater. 2020, 32, 1901493.
Xu, F.; Wang, X.; Zhu, Y. T.; Zhu, Y. Wavy ribbons of carbon nanotubes for stretchable conductors. Adv. Funct. Mater. 2012, 22, 1279–1283.
Zhang, Y.; Wang, Y. D.; Qing, X.; Wang, Y.; Zhong, W. B.; Wang, W. W.; Chen, Y. L.; Liu, Q. Z.; Li, M. F.; Wang, D. Fiber organic electrochemical transistors based on multi-walled carbon nanotube and polypyrrole composites for noninvasive lactate sensing. Anal. Bioanal. Chem. 2020, 412, 7515–7524.
Macrelli, G.; Varshneya, A. K.; Mauro, J. C. Ultra-thin glass as a substrate for flexible photonics. Opt. Mater. 2020, 106, 109994.
Khang, D. Y.; Jiang, H.; Huang, Y.; Rogers, J. A. A stretchable form of single-crystal silicon for high-performance electronics on rubber substrates. Science 2006, 311, 208–212.
Seghir, R.; Arscott, S. Extended PDMS stiffness range for flexible systems. Sens. Actuators A:Phys. 2015, 230, 33–39.
Jeong, S. H.; Zhang, S.; Hjort, K.; Hilborn, J.; Wu, Z. G. PDMS-based elastomer tuned soft, stretchable, and sticky for epidermal electronics. Adv. Mater. 2016, 28, 5830–5836.
Liaw, D. J.; Hsu, P. N.; Chen, W. H.; Lin, S. L. High glass transitions of new polyamides, polyimides, and poly(amide-imide)s containing a triphenylamine group: Synthesis and characterization. Macromolecules 2020, 35, 4669–4676.
Wang, X. W.; Liu, Z.; Zhang, T. Flexible sensing electronics for wearable/attachable health monitoring. Small 2017, 13, 1602790.
Kaltenbrunner, M.; Sekitani, T.; Reeder, J.; Yokota, T.; Kuribara, K.; Tokuhara, T.; Drack, M.; Schwödiauer, R.; Graz, I.; Bauer-Gogonea, S. et al. An ultra-lightweight design for imperceptible plastic electronics. Nature 2013, 499, 458–463.
Zhang, X. P.; Ye, T. Y.; Meng, X. H.; Tian, Z. H.; Pang, L. H.; Han, Y. J.; Li, H.; Lu, G.; Xiu, F.; Yu, H. D. et al. Sustainable and transparent fish gelatin films for fxible electroluminescleent devices. ACS Nano 2020, 14, 3876–3884.
Nomura, K.; Ohta, H.; Takagi, A.; Kamiya, T.; Hirano, M.; Hosono, H. Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature 2004, 432, 488–492.
Guo, R. S.; Yu, Y.; Zeng, J. F.; Liu, X. Q.; Zhou, X. C.; Niu, L. Y.; Gao, T. T.; Li, K.; Yang, Y.; Zhou, F. et al. Biomimicking topographic elastomeric petals (E-petals) for omnidirectional stretchable and printable electronics. Adv. Sci. 2015, 2, 1400021.
Su, B.; Gong, S.; Ma, Z.; Yap, L. W.; Cheng, W. L. Mimosa-inspired design of a flexible pressure sensor with touch sensitivity. Small 2015, 11, 1886–1891.
Marian, F.; Gualand, I.; Tessarolo, M.; Fraboni, B.; Scavetta, E. PEDOT: Dye-based. flexible organic electrochemical transistor for highly sensitive pH monitoring. ACS Appl. Mater. Interfaces 2018, 10, 22474–22484.
Yang, A. N.; Li, Y. Z.; Yang, C. X.; Fu, Y.; Wang, N. X.; Li, L.; Yan, F. Fabric organic electrochemical transistors for biosensors. Adv. Mater. 2018, 30, 1800051.
Bihar, E.; Deng, Y. X.; Miyake, T.; Saadaoui, M.; Malliaras, G. G.; Rolandi, M. A disposable paper breathalyzer with an alcohol sensing organic electrochemical transistor. Sci. Rep. 2016, 6, 27582.
Li, Z. D.; Hu, F. M.; Chen, Z. M.; Huang, J. C.; Chen, G. N.; Chen, R. B.; Wei, M. M.; Lao, K. T.; Hu, J. J.; Zheng, J. T. et al. Fiber-junction design for directional bending sensors. npj Flex. Electron. 2021, 5, 4.
Zhu, B. W.; Wang, H.; Leow, W. R.; Cai, Y. R; Loh, X. J.; Han, M. Y.; Chen, X. D. Silk fibroin for flexible electronic devices. Adv. Mater. 2016, 28, 4250–4265.
Choudhary, T.; Rajamanickam, G. P.; Dendukuri, D. Woven electrochemical fabric-based test sensors (WEFTS): A new class of multiplexed electrochemical sensors. Lab Chip 2015, 15, 2064–2072.
Chinnasamy, T.; Segerink, L. I.; Nystrand, M.; Gantelius, J.; Andersson Svahn, H. Point-of-care vertical flow allergen microarray assay: Proof of concept. Clin. Chem. 2014, 60, 1209–1216.
Yang, B.; Li, W. W.; Zhang, M.; Wang, L.; Ding, X. Y. Recycling of high-value-added aramid nanofibers from waste aramid resources via a feasible and cost-effective approach. ACS Nano 2021, 15, 7195–7207.
Wang, M.; Wang, Y. L.; Gao, B. B.; Bian, Y. F.; Liu, X. J.; He, Z. Z.; Zeng, Y.; Du, X.; Gu, Z. Z. Fast strategy to functional paper surfaces. ACS Appl. Mater. Interfaces 2019, 11, 14445–14456.
Pelton, R. Bioactive paper provides a low-cost platform for diagnostics. TrAC Trends Anal. Chem. 2009, 28, 925–942.
Ifuku, S.; Nogi, M.; Abe, K.; Handa, K.; Nakatsubo, F.; Yano, H. Surface modification of bacterial cellulose nanofibers for property enhancement of optically transparent composites: Dependence on acetyl-group DS. Biomacromolecules 2007, 8, 1973–1978.
Li, C.; Boban, M.; Snyder, S. A.; Kobaku, S. P. R.; Kwon, G.; Mehta, G.; Tuteja, A. Paper-based surfaces with extreme wettabilities for novel, open-channel microfluidic devices. Adv. Funct. Mater. 2016, 26, 6121–6131.
Guo, J. Q.; Fang, W. W.; Welle, A.; Feng, W. Q.; Filpponen, I.; Rojas, O. J.; Levkin, P. A. Superhydrophobic and slippery lubricant-infused flexible transparent nanocellulose films by photoinduced thiol-ene functionalization. ACS Appl. Mater. Interfaces 2016, 8, 34115–34122.
Magliulo, M.; Mulla, M. Y.; Singh, M.; Macchia, E.; Tiwari, A.; Torsi, L.; Manoli, K. Printable and flexible electronics: From TFTs to bioelectronic devices. J. Mater. Chem. C 2015, 3, 12347–12363.
Yu, K. J.; Yan, Z.; Han, M. D.; Rogers, J. A. Inorganic semiconducting materials for flexible and stretchable electronics. npj Flex. Electron. 2017, 1, 4.
Naghdi, S.; Rhee, K. Y.; Hui, D.; Park, S. J. A review of conductive metal nanomaterials as conductive, transparent, and flexible coatings, thin films, and conductive fillers: Different deposition methods and applications. Coatings 2018, 8, 278.
Wahl, T.; Hanisch, J.; Ahlswede, E. Comparison of the Al back contact deposited by sputtering, e-beam, or thermal evaporation for inverted perovskite solar cells. J. Phys. D:Appl. Phys. 2018, 51, 135502.
Kujala, M.; Kololuoma, T.; Keskinen, J.; Lupo, D.; Mäntysalo, M.; Kraft, T. M. Bending reliability of screen-printed vias for a flexible energy module. npj Flex. Electron. 2020, 4, 24.
Jiang, J. K.; Bao, B.; Li, M. Z.; Sun, J. Z.; Zhang, C.; Li, Y.; Li, F. Y.; Yao, X.; Song, Y. L. Fabrication of transparent multilayer circuits by inkjet printing. Adv. Mater. 2016, 28, 1420–1426.
Bowden, N.; Brittain, S.; Evans, A. G.; Hutchinson, J. W.; Whitesides, G. M. Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer. Nature 1998, 393, 146–149.
Liu, J. W.; Wang, J. L.; Wang, Z. H.; Huang, W. R.; Yu, S. H. Manipulating nanowire assembly for flexible transparent electrodes. Angew. Chem., Int. Ed. 2014, 53, 13477–13482.
Xiong, W. W.; Liu, H. L.; Chen, Y. Z.; Zheng, M. L.; Zhao, Y. Y.; Kong, X. B.; Wang, Y.; Zhang, X. Q.; Kong, X. Y.; Wang, P. F. et al. Highly conductive, air-stable silver nanowire@iongel composite films toward flexible transparent electrodes. Adv. Mater. 2016, 28, 7167–7172.
Madaria, A. R.; Kumar, A.; Ishikawa, F. N.; Zhou, C. W. Uniform, highly conductive, and patterned transparent films of a percolating silver nanowire network on rigid and flexible substrates using a dry transfer technique. Nano Res. 2010, 3, 564–573.
Park, J. H.; Hwang, G. T.; Kim, S.; Seo, J.; Park, H. J.; Yu, K.; Kim, T. S.; Lee, K. J. Flash-induced self-limited plasmonic welding of silver nanowire network for transparent flexible energy harvester. Adv. Mater. 2017, 29, 1603473.
Tokuno, T.; Nogi, M.; Karakawa, M.; Jiu, J. T.; Nge, T. T.; Aso, Y.; Suganuma, K. Fabrication of silver nanowire transparent electrodes at room temperature. Nano Res. 2011, 4, 1215–1222.
Hwang, Y. T.; Chung, W. H.; Jang, Y. R.; Kim, H. S. Intensive plasmonic flash light sintering of copper nanoinks using a bandpass light filter for highly electrically conductive electrodes in printed electronics. ACS Appl. Mater. Interfaces 2016, 8, 8591–8599.
Kang, H.; Kim, Y.; Cheon, S.; Yi, G. R.; Cho, J. H. Halide welding for silver nanowire network electrode. ACS Appl. Mater. Interfaces 2017, 9, 30779–30785.
Ahn, J.; Seo, J. W.; Kim, J. Y.; Lee, J.; Cho, C.; Kang, J.; Choi, S. Y.; Lee, J. Y. Self-supplied nano-fusing and transferring metal nanostructures via surface oxide reduction. ACS Appl. Mater. Interfaces 2016, 8, 1112–1119.
Kang, H.; Song, S. J.; Sul, Y. E.; An, B. S.; Yin, Z. X.; Choi, Y.; Pu, L.; Yang, C. W.; Kim, Y. S.; Cho, S. M. et al. Epitaxial-growth-induced junction welding of silver nanowire network electrodes. ACS Nano 2018, 12, 4894–4902.
Garnett, E. C.; Cai, W. S.; Cha, J. J.; Mahmood, F.; Connor, S. T.; Greyson Christoforo, M.; Cui, Y.; McGehee, M. D.; Brongersma, M. L. Self-limited plasmonic welding of silver nanowire junctions. Nat. Mater. 2012, 11, 241–249.
Liu, Y.; Zhang, J. M.; Gao, H.; Wang, Y.; Liu, Q. X.; Huang, S. Y.; Guo, C. F.; Ren, Z. F. Capillary-force-induced cold welding in silver-nanowire-based flexible transparent electrodes. Nano Lett. 2017, 17, 1090–1096.
Crispin, X.; Jakobsson, F. L. E.; Crispin, A.; Grim, P. C. M.; Andersson, P.; Volodin, A.; van Haesendonck, C.; Van der Auweraer, M.; Salaneck, W. R.; Berggren, M. The origin of the high conductivity of poly(3, 4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT-PSS) plastic electrodes. Chem. Mater. 2006, 18, 4354–4360.
Rogers, J. A.; Someya, T.; Huang, Y. G. Materials and mechanics for stretchable electronics. Science 2010, 327, 1603–1607.
Ferrari, L. M.; Ismailov, U.; Badier, J. M.; Greco, F.; Ismailova, E. Conducting polymer tattoo electrodes in clinical electro- and magneto-encephalography. npj Flex. Electron. 2020, 4, 4.
Yang, Y. B.; Yang, X. D.; Tan, Y. N.; Yuan, Q. Recent progress in flexible and wearable bio-electronics based on nanomaterials. Nano Res. 2017, 10, 1560–1583.
Liu, K.; Guo, Y. L.; Liu, Y. Q. Recent progress in stretchable organic field-effect transistors. Sci. China Technol. Sci. 2019, 62, 1255–1276.
Kang, Y. J.; Chung, H.; Kim, M. S.; Kim, W. Enhancement of CNT/PET film adhesion by nano-scale modification for flexible all-solid-state supercapacitors. Appl. Surf. Sci. 2015, 355, 160–165.
Kaidarova, B. A.; Liu, W. H.; Swanepoel, L.; Almansouri, A.; Geraldi, N. R.; Duarte, C. M.; Kosel, J. Flexible hall sensor made of laser-scribed graphene. npj Flex. Electron. 2021, 5, 2.
Chen, T.; Xue, Y. H.; Roy, A. K.; Dai, L. M. Transparent and stretchable high-performance supercapacitors based on wrinkled graphene electrodes. ACS Nano 2014, 8, 1039–1046.
Lee, P.; Ham, J.; Lee, J.; Hong, S.; Han, S.; Suh, Y. D.; Lee, S. E.; Yeo, J.; Lee, S. S.; Lee, D. et al. Highly stretchable or transparent conductor fabrication by a hierarchical multiscale hybrid nanocomposite. Adv. Funct. Mater. 2014, 24, 5671–5678.
Wang, G. J. N.; Gasperini, A.; Bao, Z. N. Stretchable polymer semiconductors for plastic electronics. Adv. Electron. Mater. 2018, 4, 1700429.
Sugiyama, F.; Kleinschmidt, A. T.; Kayser, L. V.; Rodriquez, D.; Finn III, M.; Alkhadra, M. A.; Wan, J. M. H.; Ramírez, J.; Chiang, A. S. C.; Root, S. E. et al. Effects of flexibility and branching of side chains on the mechanical properties of low-bandgap conjugated polymers. Polym. Chem. 2018, 9, 4354–4363.
Moser, M.; Hidalgo, T. C.; Surgailis, J.; Gladisch, J.; Ghosh, S.; Sheelamanthula, R.; Thiburce, Q.; Giovannitti, A.; Salleo, A.; Gasparini, N. et al. Side chain redistribution as a strategy to boost organic electrochemical transistor performance and stability. Adv. Mater. 2020, 32, 2002748.
Flagg, L. Q.; Bischak, C. G.; Onorato, J. W.; Rashid, R. B.; Luscombe, C. K.; Ginger, D. S. Polymer crystallinity controls water uptake in glycol side-chain polymer Organic Electrochemical Transistors. J. Am. Chem. Soc. 2019, 141, 4345–4354.
Giovannitti, A.; Sbircea, D. T.; Inal, S.; Nielsen, C. B.; Bandiello, E.; Hanifi, D. A.; Sessolo, M.; Malliaras, G. G.; McCulloch, I.; Rivnay, J. Controlling the mode of operation of organic transistors through side-chain engineering. Proc. Natl. Acad. Sci. USA 2016, 113, 12017–12022.
Paterson, A. F.; Singh, S.; Fallon, K. J.; Hodsden, T.; Han, Y.; Schroeder, B. C.; Bronstein, H.; Heeney, M.; McCulloch, I.; Anthopoulos, T. D. Recent progress in high-mobility organic transistors: A reality check. Adv. Mater. 2018, 30, 1801079.
Zhu, Z. Y.; Song, H. J.; Xu, J. K.; Liu, C. C.; Jiang, Q. L.; Shi, H. Significant conductivity enhancement of PEDOT: PSS films treated with lithium salt solutions. J. Mater. Sci.: Mater. Electron. 2015, 26, 429–434.
Nightingale, J.; Pitsalidis, C.; Pappa, A. M.; Tan, E.; Stewart, K.; Owens, R. M.; Kim, J. S. Small molecule additive for low-power accumulation mode organic electrochemical transistors. J. Mater. Chem. C 2020, 8, 8846–8855.
Keene, S. T.; van der Pol, T. P. A.; Zakhidov, D.; Weijtens, C. H. L.; Janssen, R. A. J.; Salleo, A.; van de Burgt, Y. Enhancementmode PEDOT: PSS organic electrochemical transistors using molecular de-doping. Adv. Mater. 2020, 32, 2000270.
Döbbelin, M.; Marcilla, R.; Salsamendi, M.; Pozo-Gonzalo, C.; Carrasco, P. M.; Pomposo, J. A.; Mecerreyes, D. Influence of ionic liquids on the electrical conductivity and morphology of PEDOT: PSS films. Chem. Mater. 2007, 19, 2147–2149.
Wu, X. H.; Surendran, A.; Ko, J.; Filonik, O.; Herzig, E. M.; Müller-Buschbaum, P.; Leong, W. L. Ionic-liquid doping enables high transconductance, fast response time, and high ion sensitivity in organic electrochemical transistors. Adv. Mater. 2019, 31, 1805544.
Paterson, A. F.; Savva, A.; Wustoni, S.; Tsetseris, L.; Paulsen, B. D.; Faber, H.; Emwas, A. H.; Chen, X. X.; Nikiforidis, G.; Hidalgo, T. C. et al. Water stable molecular n-doping produces organic electrochemical transistors with high transconductance and record stability. Nat. Commun. 2020, 11, 3004.
Kee, S.; Kim, N.; Kim, B. S.; Park, S.; Jang, Y. H.; Lee, S. H.; Kim, J.; Kim, J.; Kwon, S.; Lee, K. Controlling molecular ordering in aqueous conducting polymers using ionic liquids. Adv. Mater. 2016, 28, 8625–8631.
Liao, J. J.; Si, H. W.; Zhang, X. D.; Lin, S. W. Functional sensing interfaces of PEDOT: PSS organic electrochemical transistors for chemical and biological sensors: A mini review. Sensors 2019, 19, 218.
Wang, N. X.; Yang, A. N.; Fu, Y.; Li, Y. Z.; Yan, F. Functionalized organic thin film transistors for biosensing. Acc. Chem. Res. 2019, 52, 277–287.
Kim, D. J.; Lee, N. E.; Park, J. S.; Park, I. J.; Kim, J. G.; Cho, H. J. Organic electrochemical transistor based immunosensor for prostate specific antigen (PSA) detection using gold nanoparticles for signal amplification. Biosens. Bioelectron. 2010, 25, 2477–2482.
Shin, M.; Oh, J. Y.; Byun, K. E.; Lee Y. J.; Kim B.; Baik H. K.; Park J. J.; Jeong U. Polythiophene nanofibril bundles surface-embedded in elastomer: A route to a highly stretchable active channel layer. Adv. Mater. 2015, 27, 1255–1261.
Song, E.; Kang, B.; Choi, H. H.; Sin, D. H.; Lee H.; Lee W. H.; Cho, K. Stretchable and transparent organic semiconducting thin film with conjugated polymer nanowires embedded in an elastomeric matrix. Adv. Electron. Mater. 2016, 2, 1500250.
Lu, L. J.; Jiang, C. P.; Hu, G. S.; Liu, J. Q.; Yang, B. Flexible noncontact sensing for human-machine interaction. Adv. Mater. 2021, 33, 2100218.
Wu, Y. H.; Tseng, P. Y.; Hsieh, P. Y.; Chou, H. T.; Tai, N. H. High mobility of graphene-based flexible transparent field effect transistors doped with TiO2 and nitrogen-doped TiO2. ACS Appl. Mater. Interfaces 2015, 7, 9453–9461.
de Oliveira, R. F.; Livio, P. A.; Montes-García, V.; Ippolito, S.; Eredia, M.; Fanjul-Bolado, P.; García, M. B. G.; Casalini, S.; Samorì, P. Liquid-gated transistors based on reduced graphene oxide for flexible and wearable electronics. Adv. Funct. Mater. 2019, 29, 1905375.
Park, J. W.; Park, S. J.; Kwon, O. S.; Lee, C.; Jang, J. Polypyrrole nanotube embedded reduced graphene oxide transducer for field-effect transistor-type H2O2 biosensor. Anal. Chem. 2014, 86, 1822–1828.
Chaharsoughi, M. S.; Edberg, J.; Ersman, P. A.; Crispin, X.; Zhao, D.; Jonsson, M. P. Ultrasensitive electrolyte-assisted temperature sensor. npj Flex. Electron. 2020, 4, 23.
Chen, S.; Surendran, A.; Wu, X. H.; Leong, W. L. Contact modulated ionic transfer doping in all-solid-state organic electrochemical transistor for ultra-high sensitive tactile perception at low operating voltage. Adv. Funct. Mater. 2020, 30, 2006186.
del Agua, I.; Porcarelli, L.; Curto, V. F.; Sanchez-Sanchez, A.; Ismailova, E.; Malliaras, G. G.; Mecerreyes, D. A Na+ conducting hydrogel for protection of organic electrochemical transistors. J. Mater. Chem. B 2018, 6, 2901–2906.
Jo, Y. J.; Kwon, K. Y.; Khan, Z. U.; Crispin, X.; Kim, T. I. Gelatin hydrogel-based organic electrochemical transistors and their integrated logic circuits. ACS Appl. Mater. Interfaces 2018, 10, 39083–39090.
Liao, C. Z.; Mak, C.; Zhang, M.; Chan, H. L. W.; Yan, F. Flexible organic electrochemical transistors for highly selective enzyme biosensors and used for saliva testing. Adv. Mater. 2015, 27, 676–681.
Wustoni, S.; Savva, A.; Sun, R. F.; Bihar, E.; Inal, S. Enzyme-free detection of glucose with a hybrid conductive gel electrode. Adv. Mater. Interfaces 2019, 6, 1800928.
Ji, W.; Wu, D. Q.; Tang, W.; Xi, X.; Su, Y. Z.; Guo, X. J.; Liu, R. L. Carbonized silk fabric-based flexible organic electrochemical transistors for highly sensitive and selective dopamine detection. Sens. Actuators B:Chem. 2020, 304, 127414.
Keene, S. T.; Fogarty, D.; Cooke, R.; Casadevall, C. D.; Salleo, A.; Parlak, O. Wearable organic electrochemical transistor patch for multiplexed sensing of calcium and ammonium ions from human perspiration. Adv. Healthc. Mater. 2019, 8, 1901321.
Scheiblin, G.; Coppard, R.; Owens, R. M.; Mailley, P.; Malliaras, G. G. Referenceless pH sensor using organic electrochemical transistors. Adv. Mater. Technol. 2017, 2, 1600141.
Nair, R. R. Glucose sensing and hybrid instrumentation based on printed organic electrochemical transistors. Flex. Print. Electron. 2020, 5, 015001.
Nair, R. R. Organic electrochemical transistor on paper for the detection of halide anions in biological analytes. Flex. Print. Electron. 2020, 5, 045004.
Fan, J. X.; Montemagno, C.; Gupta, M. 3D printed high transconductance organic electrochemical transistors on flexible substrates. Org. Electron. 2019, 73, 122–129.
Yan, Y. J.; Wu, X. M.; Chen, Q. Z.; Liu, Y. Q.; Chen, H. P.; Guo, T. L. High-performance low-voltage flexible photodetector arrays based on all-solid-state organic electrochemical transistors for photosensing and imaging. ACS Appl. Mater. Interfaces 2019, 11, 20214–20224.
Zhang, S. M.; Hubis, E.; Girard, C.; Kumar, P.; DeFranco, J.; Cicoira, F. Water stability and orthogonal patterning of flexible micro-electrochemical transistors on plastic. J. Mater. Chem. C 2016, 4, 1382–1385.
Wu, X. H.; Surendran, A.; Moser, M.; Chen, S.; Muhammad, B. T.; Maria, I. P.; McCulloch, I.; Leong, W. L. Universal spraydeposition process for scalable, high-performance, and stable organic electrochemical transistors. ACS Appl. Mater. Interfaces 2020, 12, 20757–20764.
Gooding, J. J. Nanostructuring electrodes with carbon nanotubes: A review on electrochemistry and applications for sensing. Electrochim. Acta 2005, 50, 3049–3060.
Ikariyama, Y.; Yamauchi, S.; Yukiashi, T.; Ushioda, H. One step fabrication of microbiosensor prepared by the codeposition of enzyme and platinum particles. Anal. Lett. 1987, 20, 1791–1801.
Wang, Y.; Xiong, C.; Qu, H.; Chen, W.; Ma, A. J.; Zheng, L. Highly sensitive real-time detection of tyrosine based on organic electrochemical transistors with poly-(diallyldimethylammonium chloride), gold nanoparticles and multi-walled carbon nanotubes. J. Electroanal. Chem. 2017, 799, 321–326.
Alexeyeva, N.; Tammeveski, K. Electroreduction of oxygen on gold nanoparticle/PDDA-MWCNT nanocomposites in acid solution. Anal. Chim. Acta 2008, 618, 140–146.
Guo, X.; Liu, J.; Liu, F. Y.; She, F.; Zheng, Q.; Tang, H.; Ma, M.; Yao, S. Z. Label-free and sensitive sialic acid biosensor based on organic electrochemical transistors. Sens. Actuators B:Chem. 2017, 240, 1075–1082.
Tang, H.; Yan, F.; Tai, Q. D.; Chan, H. L. W. The improvement of glucose bioelectrocatalytic properties of platinum electrodes modified with electrospun TiO2 nanofibers. Biosens. Bioelectron. 2010, 25, 1646–1651.
Ji, X. D.; Lau, H. Y.; Ren, X. C.; Peng, B. Y.; Zhai, P.; Feng, S. P.; Chan, P. K. L. Highly sensitive metabolite biosensor based on organic electrochemical transistor integrated with microfluidic channel and poly(N-vinyl-2-pyrrolidone)-capped platinum nanoparticles. Adv. Mater. Technol. 2016, 1, 1600042.
Kochmann, S.; Hirsch, T.; Wolfbeis, O. S. Graphenes in chemical sensors and biosensors. TrAC Trends Anal. Chem. 2012, 39, 87–113.
Zhang, J. L.; Zhang, F.; Yang, H. J.; Huang, X. L.; Liu, H.; Zhang, J. Y.; Guo, S. W. Graphene oxide as a matrix for enzyme immobilization. Langmuir 2010, 26, 6083–6085.
Jiang, Y.; Wang, A. Y.; Kan, J. Q. Selective uricase biosensor based on polyaniline synthesized in ionic liquid. Sens. Actuators B:Chem. 2007, 124, 529–534.
Marquez, A. V.; McEvoy, N.; Pakdel, A. Organic electrochemical transistors (OECTs) toward flexible and wearable bioelectronics. Molecules 2020, 25, 5288.
Gao, W.; Emaminejad, S.; Nyein, H. Y. Y.; Challa, S.; Chen, K.; Peck, A.; Fahad, H. M.; Ota, H.; Shiraki, H.; Kiriya, D. et al. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 2016, 529, 509–514.
Matzeu, G.; Florea, L.; Diamond, D. Advances in wearable chemical sensor design for monitoring biological fluids. Sens. Actuators B:Chem. 2015, 211, 403–418.
Yang, Y. R.; Gao, W. Wearable and flexible electronics for continuous molecular monitoring. Chem. Soc. Rev. 2019, 48, 1465–1491.
Said, E.; Robinson, N. D.; Nilsson, D.; Svensson, P. O.; Berggren, M. Visualizing the electric field in electrolytes using electrochromism from a conjugated polymer. Electrochem. Solid-State Lett. 2005, 8, H12–H16.
Shapiro, N. I.; Howell, M. D.; Talmor, D.; Nathanson, L. A.; Lisbon A.; Wolfe R. E.; Weiss, J. W. Serum lactate as a predictor of mortality in emergency department patients with infection. Ann. Emerg. Med. 2005, 45, 524–528.
Vacca, A.; Mascia, M.; Rizzardini, S.; Palmas, S.; Mais, L. Coating of gold substrates with polyaniline through electrografting of aryl diazonium salts. Electrochim. Acta 2014, 126, 81–89.
Majak, D.; Fan, J. X.; Kang, S.; Gupta, M. Delta-9-tetrahydrocannabinol (Δ9-THC) sensing using an aerosol jet printed organic electrochemical transistor (OECT). J. Mater. Chem. B 2021, 9, 2107–2117.
Lei, H. W.; Wu, B. L.; Cha, C. S.; Kita, H. Electro-oxidation of glucose on platinum in alkaline solution and selective oxidation in the presence of additives. J. Electroanal. Chem. 1995, 382, 103–110.
Michałowski, J.; Hałaburda, P. Flow-injection chemiluminescence determination of epinephrine in pharmaceutical preparations using raw apple juice as enzyme source. Talanta 2001, 55, 1165–1171.
Coppedè, N.; Tarabella, G.; Villani, M.; Calestani, D.; Iannotta, S.; Zappettini, A. Human stress monitoring through an organic cotton-fiber biosensor. J. Mater. Chem. B 2014, 2, 5620–5626.
Mak, C. H.; Liao, C. Z.; Fu, Y.; Zhang, M.; Tang, C. Y.; Tsang, Y. H.; Chan, H. L. W.; Yan, F. Highly-sensitive epinephrine sensors based on organic electrochemical transistors with carbon nanomaterial modified gate electrodes. J. Mater. Chem. C 2015, 3, 6532–6538.
Robinson, D. L.; Hermans, A.; Seipel, A. T.; Wightman, R. M. Monitoring rapid chemical communication in the brain. Chem. Rev. 2008, 108, 2554–2584.
Jackowska, K.; Krysinski, P. New trends in the electrochemical sensing of dopamine. Anal. Bioanal. Chem. 2013, 405, 3753–3771.
Schultz, W. Dopamine reward prediction-error signalling: A two-component response. Nat. Rev. Neurosci. 2016, 17, 183–195.
Gualandi, I.; Tonelli, D.; Mariani, F.; Scavetta, E.; Marzocchi, M.; Fraboni, B. Selective detection of dopamine with an all PEDOT: PSS organic electrochemical transistor. Sci. Rep. 2016, 6, 35419.
Currano, L. J.; Sage, F. C.; Hagedon, M.; Hamilton, L.; Patrone, J.; Gerasopoulos, K. Wearable sensor system for detection of lactate in sweat. Sci. Rep. 2018, 8, 15890.
Katsounaros, I.; Schneider, W. B.; Meier, J. C.; Benedikt, U.; Biedermann, P. U.; Auer, A. A.; Mayrhofer, K. J. J. Hydrogen peroxide electrochemistry on platinum: Towards understanding the oxygen reduction reaction mechanism. Phys. Chem. Chem. Phys. 2012, 14, 7384–7391.
Lin, P.; Yan, F.; Yu, J. J.; Chan, H. L. W.; Yang, M. The application of organic electrochemical transistors in cell-based biosensors. Adv. Mater. 2010, 22, 3655–3660.
Frizzell, R. A.; Hanrahan, J. W. Physiology of epithelial chloride and fluid secretion. Cold Spring Harb. Perspect. Med. 2012, 2, a009563.
Yao, C. L.; Xie, C. Y.; Lin, P.; Yan, F.; Huang, P. B.; Hsing, I. M. Organic electrochemical transistor array for recording transepithelial ion transport of human airway epithelial cells. Adv. Mater. 2013, 25, 6575–6580.
Diacci, C.; Abedi, T.; Lee, J. W.; Gabrielsson, E. O.; Berggren, M.; Simon, D. T.; Niittylä, T.; Stavrinidou, E. Diurnal in vivo xylem sap glucose and sucrose monitoring using implantable organic electrochemical transistor sensors. iScience 2021, 24, 101966.
Cea, C.; Spyropoulos, G. D.; Jastrzebska-Perfect, P.; Ferrero, J. J.; Gelinas, J. N.; Khodagholy, D. Enhancement-mode ion-based transistor as a comprehensive interface and real-time processing unit for in vivo electrophysiology. Nat. Mater. 2020, 19, 679–686.
Yang, S. Y.; DeFranco, J. A.; Sylvester, Y. A.; Gobert, T. J.; Macaya, D. J.; Owens, R. M.; Malliaras, G. G. Integration of a surface-directed microfluidic system with an organic electrochemical transistor array for multi-analyte biosensors. Lab Chip 2009, 9, 704–708.
Khodagholy, D.; Gurfinkel, M.; Stavrinidou, E.; Leleux, P.; Herve, T.; Sanaur, S.; Malliaras, G. G. High speed and high density organic electrochemical transistor arrays. Appl. Phys. Lett. 2011, 99, 163304.
Lee, W.; Kim, D.; Rivnay, J.; Matsuhisa, N.; Lonjaret, T.; Yokota, T.; Yawo, H.; Sekino, M.; Malliaras, G. G.; Someya, T. Integration of organic electrochemical and field-effect transistors for ultraflexible, high temporal resolution electrophysiology arrays. Adv. Mater. 2016, 28, 9722–9728.
Wang, H. C.; Zhou, R. C.; Li, D. H.; Zhang, L. R.; Ren, G. Z.; Wang, L.; Liu, J. H.; Wang, D. Y.; Tang, Z. H.; Lu, G. et al. High-performance foam-shaped strain sensor based on carbon nanotubes and Ti3C2Tx MXene for the monitoring of human activities. ACS Nano 2021, 15, 9690–9700.
Sun, Q. Z.; Wang, L.; Yue, X. P.; Zhang, L. R.; Ren, G. Z.; Li, D. H.; Wang, H. C.; Han, Y. J.; Xiao, L. L.; Lu, G. et al. Fully sustainable and high-performance fish gelatin-based triboelectric nanogenerator for wearable movement sensing and human-machine interaction. Nano Energy 2021, 89, 106329.
Savva, A.; Cendra, C.; Giugni, A.; Torre, B.; Surgailis, J.; Ohayon, D.; Giovannitti, A.; McCulloch, I.; Di Fabrizio, E.; Salleo, A. et al. Influence of water on the performance of organic electrochemical transistors. Chem. Mater. 2019, 31, 927–937.
Zhai, X. T.; Zhang, R. X.; Sheng, H. X.; Wang, J.; Zhu, Y. M.; Lu, Z. C.; Li, Z. Y.; Huang, X.; Li, H.; Lu, G. Direct observation of the light-induced exfoliation of molybdenum disulfide sheets in water medium. ACS Nano 2021, 15, 5661–5670.
Chen, Y. Q.; Li, Z. Y.; Huang, X.; Lu, G.; Huan, W. Single-molecule mapping of catalytic reactions on heterostructures. Nano Today 2020, 34, 100957.
Mariani, F.; Conzuelo, F.; Cramer, T.; Gualandi, I.; Possanzini, L.; Tessarolo, M.; Fraboni, B.; Schuhmann, W.; Scavetta, E. Microscopic determination of carrier density and mobility in working organic electrochemical transistors. Small 2019, 15, 1902534.
Kim, J.; Sempionatto, J. R.; Imani, S.; Hartel, M. C.; Barfidokht, A.; Tang, G. D.; Campbell, A. S.; Mercier, P. P.; Wang, J. Simultaneous monitoring of sweat and interstitial fluid using a single wearable biosensor platform. Adv. Sci. 2018, 5, 1800880.
Acknowledgements
This work was financially supported by the National Key R&D Program of China (No. 2017YFA0204700), the National Natural Science Foundation of China (No. 11974180), the Joint Research Funds of Department of Science & Technology of Shaanxi Province and Northwestern Polytechnical University (No. 2020GXLH-Z-021), the China-Sweden Joint Mobility Project (No. 51811530018), and the Fundamental Research Funds for the Central Universities.
Author information
Authors and Affiliations
Corresponding authors
Rights and permissions
About this article
Cite this article
Wang, L., Yue, X., Sun, Q. et al. Flexible organic electrochemical transistors for chemical and biological sensing. Nano Res. 15, 2433–2464 (2022). https://doi.org/10.1007/s12274-021-3856-3
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12274-021-3856-3