Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Flexible organic electrochemical transistors for chemical and biological sensing

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Chemical and biological sensing play important roles in healthcare, environmental science, food-safety tests, and medical applications. Flexible organic electrochemical transistors (OECTs) have shown great promise in the field of chemical and biological sensing, owing to their superior sensitivity, high biocompatibility, low cost, and light weight. Herein, we summarize recent progress in the fabrication of flexible OECTs and their applications in chemical and biological sensing. We start with a brief introduction to the working principle, configuration, and sensing mechanism of the flexible OECT-based sensors. Then, we focus on the fabrication of flexible OECT-based sensors, including material selection and structural engineering of the components in OECTs: the substrate, electrodes, electrolyte, and channel. Particularly, the gate modification is discussed extensively. Then, the applications of OECT-based sensors in chemical and biological sensing are reviewed in detail. Especially, the array-based and integrated OECT sensors are also introduced. Finally, we present the conclusions and remaining challenges in the field of flexible OECT-based sensing. Our timely review will deepen the understanding of the flexible OECT-based sensors and promote the further development of the fast-growing field of flexible sensing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ling, Y.; An, T. C.; Yap, L. W.; Zhu, B. W.; Gong, S.; Cheng, W. L. Disruptive, soft, wearable sensors. Adv. Mater. 2020, 32, 1904664.

    Article  CAS  Google Scholar 

  2. Iqbal, S. M. A.; Mahgoub, I.; Du, E.; Leavitt, M. A.; Asghar, W. Advances in healthcare wearable devices. npj Flex. Electron. 2021, 5, 9.

    Article  Google Scholar 

  3. Han, Y. J.; Han, Y. F.; Zhang, X. P.; Li, L.; Zhang, C. W.; Liu, J. H.; Lu, G.; Yu, H. D.; Huang, W. Fish gelatin based triboelectric nanogenerator for harvesting biomechanical energy and self-powered sensing of human physiological signals. ACS Appl. Mater. Interfaces 2020, 12, 16442–16450.

    Article  CAS  Google Scholar 

  4. Gao, L.; Zhu, C. X.; Li, L.; Zhang, C. W.; Liu, J. H.; Yu, H. D.; Huang, W. All paper-based flexible and wearable piezoresistive pressure sensor. ACS Appl. Mater. Interfaces 2019, 11, 25034–25042.

    Article  CAS  Google Scholar 

  5. White, H. S.; Kittlesen, G. P.; Wrighton, M. S. Chemical derivatization of an array of three gold microelectrodes with polypyrrole: fabrication of a molecule-based transistor. J. Am. Chem. Soc. 1984, 106, 5375–5377.

    Article  CAS  Google Scholar 

  6. Mannerbro, R.; Ranlöf, M.; Robinson, N.; Forchheimer, R. Inkjet printed electrochemical organic electronics. Synth. Met. 2008, 158, 556–560.

    Article  CAS  Google Scholar 

  7. Shim, N. Y.; Bernards, D. A.; Macaya, D. J.; DeFranco, J. A.; Nikolou, M.; Owens, R. M.; Malliaras, G. G. All-plastic electrochemical transistor for glucose sensing using a ferrocene mediator. Sensors 2009, 9, 9896–9902.

    Article  CAS  Google Scholar 

  8. Jiang, C.; Wang, G. X.; Hein, R.; Liu, N. Z.; Luo, X. L.; Davis, J. J. Antifouling strategies for selective in vitro and in vivo sensing. Chem. Rev. 2020, 120, 3852–3889.

    Article  CAS  Google Scholar 

  9. Kim, J.; Campbell, A. S.; de Ávila, B. E. F.; Wang, J. Wearable biosensors for healthcare monitoring. Nat. Biotechnol. 2019, 37, 389–406.

    Article  CAS  Google Scholar 

  10. Braendlein, M.; Lonjaret, T.; Leleux, P.; Badier, J. M.; Malliaras, G. G. Voltage amplifier based on organic electrochemical transistor. Adv. Sci. 2017, 4, 1600247.

    Article  Google Scholar 

  11. Ghittorelli, M.; Lingstedt, L.; Romele, P.; Crăciun, N. I.; Kovács-Vajna, Z. M.; Blom, P. W. M.; Torricelli, F. High-sensitivity ion detection at low voltages with current-driven organic electrochemical transistors. Nat. Commun. 2018, 9, 1441.

    Article  Google Scholar 

  12. Brange, F.; Schmidt, A.; Bayer, J. C.; Wagner, T.; Flindt, C.; Haug, R. J. Controlled emission time statistics of a dynamic single-electron transistor. Sci. Adv. 2021, 7, eabe0793.

    Article  CAS  Google Scholar 

  13. Pitsalidis, C.; Ferro, M. P.; Iandolo, D.; Tzounis, L.; Inal, S.; Owens, R. M. Transistor in a tube: A route to three-dimensional bioelectronics. Sci. Adv. 2018, 4, eaat4253.

    Article  CAS  Google Scholar 

  14. Li, H.; Shi, W.; Song, J.; Jang, H. J.; Dailey, J.; Yu, J. S.; Katz, H. E. Chemical and biomolecule sensing with organic field-effect transistors. Chem. Rev. 2019, 119, 3–35.

    Article  CAS  Google Scholar 

  15. Contat-Rodrigo, L.; Pérez-Fuster, C.; Lidón-Roger, J.; Bonfiglio, A.; García-Breijo, E. Characterization of screen-printed organic electrochemical transistors to detect cations of different sizes. Sensors 2016, 16, 1599.

    Article  Google Scholar 

  16. Spyropoulos, G. D.; Gelinas, J. N.; Khodagholy, D. Internal ion-gated organic electrochemical transistor: A building block for integrated bioelectronics. Sci. Adv. 2019, 5, eaau7378.

    Article  CAS  Google Scholar 

  17. Koklu, A.; Wustoni, S.; Musteata, V. E.; Ohayon, D.; Moser, M.; McCulloch, I.; Nunes, S. P.; Inal, S. Microfluidic integrated organic electrochemical transistor with a nanoporous membrane for amyloid-β detection. ACS Nano 2021, 15, 8130–8141.

    Article  CAS  Google Scholar 

  18. Wang, Y. D.; Zhou, Z.; Qing, X.; Zhong, W. B.; Liu, Q. Z.; Wang, W. W.; Li, M. F.; Liu, K.; Wang, D. Ion sensors based on novel fiber organic electrochemical transistors for lead ion detection. Anal. Bioanal. Chem. 2016, 408, 5779–5787.

    Article  CAS  Google Scholar 

  19. Braendlein, M.; Pappa, A. M.; Ferro, M.; Lopresti, A.; Acquaviva, C.; Mamessier, E.; Malliaras, G. G.; Owens, R. M. Lactate detection in tumor cell cultures using organic transistor circuits. Adv. Mater. 2017, 29, 1605744.

    Article  Google Scholar 

  20. Khodagholy, D.; Curto, V. F.; Fraser, K. J.; Gurfinkel, M.; Byrne, R.; Diamond, D.; Malliaras, G. G.; Benito-Lopez, F.; Owens, R. M. Organic electrochemical transistor incorporating an ionogel as a solid state electrolyte for lactate sensing. J. Mater. Chem. 2010, 22, 4440–4443.

    Article  Google Scholar 

  21. Bernards, D. A.; Macaya, D. J.; Nikolou, M.; DeFranco, J. A.; Takamatsu, S.; Malliaras, G. G. Enzymatic sensing with organic electrochemical transistors. J. Mater. Chem. 2008, 18, 116–120.

    Article  CAS  Google Scholar 

  22. Tang, H.; Lin, P.; Chan, H. L. W.; Yan, F. Highly sensitive dopamine biosensors based on organic electrochemical transistors. Biosens. Bioelectron. 2011, 26, 4559–4563.

    Article  CAS  Google Scholar 

  23. Lin, P.; Luo, X. T.; Hsing, I. M.; Yan, F. Organic electrochemical transistors integrated in flexible microfluidic systems and used for label-free DNA sensing. Adv. Mater. 2011, 23, 4035–4040.

    Article  CAS  Google Scholar 

  24. He, R. X.; Zhang, M.; Tan, F.; Leung, P. H. M.; Zhao, X. Z.; Chan, H. L. W.; Yang, M.; Yan, F. Detection of bacteria with organic electrochemical transistors. J. Mater. Chem. 2010, 22, 22072–22076.

    Article  Google Scholar 

  25. Lingstedt, L. V.; Ghittorelli, M.; Brückner, M.; Reinholz, J.; Crăciun, N. I.; Torricelli, F.; Mäilander, V.; Gkoupidenis, P.; Blom, P. W. M. Monitoring of cell layer integrity with a current-driven organic electrochemical transistor. Adv. Healthc. Mater. 2019, 8, 1900128.

    Article  Google Scholar 

  26. Liu, Y. X.; Dong, X. C.; Chen, P. Biological and chemical sensors based on graphene materials. Chem. Soc. Rev. 2012, 41, 2283–2307.

    Article  CAS  Google Scholar 

  27. Rivnay, J.; Inal, S.; Salleo, A.; Owens, R. M.; Berggren, M.; Malliaras, G. G. Organic electrochemical transistors. Nat. Rev. Mater. 2018, 3, 17086.

    Article  CAS  Google Scholar 

  28. Bernards, D. A.; Malliaras, G. G. Steady-state and transient behavior of organic electrochemical transistors. Adv. Funct. Mater. 2007, 17, 3538–3544.

    Article  CAS  Google Scholar 

  29. Friedlein, J. T.; McLeod, R. R.; Rivnay, J. Device physics of organic electrochemical transistors. Org. Electron. 2018, 33, 398–414.

    Article  Google Scholar 

  30. Donahue, M. J.; Williamson, A.; Strakosas, X.; Friedlein, J. T.; Mcleod, R. R.; Gleskova, H.; Malliaras, G. G. High-performance vertical organic electrochemical transistors. Adv. Mater. 2018, 30, 1705031.

    Article  Google Scholar 

  31. Rivnay, J.; Leleux, P.; Ferro, M.; Sessolo, M.; Williamson, A.; Koutsouras D. A.; Khodagholy D.; Ramuz M.; Strakosas X.; Owens R. M. et al. High-performance transistors for bioelectronics through tuning of channel thickness. Sci. Adv. 2015, 1, e1400251.

    Article  Google Scholar 

  32. Inal, S.; Malliaras, G. G.; Rivnay, J. Benchmarking organic mixed conductors for transistors. Nat. Commun. 2017, 8, 1767.

    Article  Google Scholar 

  33. Yin, Z. Y.; Tordjman, M.; Lee, Y.; Vardi, A.; Kalish, R.; del Alamo, J. A. Enhanced transport in transistor by tuning transition-metal oxide electronic states interfaced with diamond. Sci. Adv. 2018, 4, eaau0480.

    Article  Google Scholar 

  34. Mamo, M. D.; Shin, E. S.; Noh, Y. Y. Self-aligned patterning of conductive films on plastic substrates for electrodes of flexible electronics. J. Mater. Chem. C 2017, 5, 10900–10906.

    Article  CAS  Google Scholar 

  35. Takamatsu, S.; Lonjaret, T.; Ismailova, E.; Masuda, A.; Itoh, T.; Malliaras, G. G. Wearable keyboard using conducting polymer electrodes on textiles. Adv. Mater. 2016, 28, 4485–4488.

    Article  CAS  Google Scholar 

  36. Zhang, N.; Hu, Y. S.; Liu, X. Y. Transparent organic thin film transistors with WO3/Ag/WO3 source-drain electrodes fabricated by thermal evaporation. Appl. Phys. Lett. 2013, 103, 033301.

    Article  Google Scholar 

  37. Zhang, S. M.; Hubis, E.; Tomasello, G.; Soliveri, G.; Kumar, P.; Cicoira, F. Patterning of stretchable organic electrochemical transistors. Chem. Mater. 2017, 29, 3126–3132.

    Article  CAS  Google Scholar 

  38. Hong, J. Y.; Kim, W.; Choi, D.; Kong, J.; Park, H. S. Omnidirectionally stretchable and transparent graphene electrodes. ACS Nano 2016, 10, 9446–9455.

    Article  CAS  Google Scholar 

  39. He, Q. Y.; Wu, S. X.; Gao, S.; Cao, X. H.; Yin, Z. Y.; Li, H.; Chen, P.; Zhang, H. Transparent, flexible, all-reduced graphene oxide thin film transistors. ACS Nano 2011, 5, 5038–5044.

    Article  CAS  Google Scholar 

  40. Lipomi, D. J.; Vosgueritchian, M.; Tee, B. C. K.; Hellstrom, S. L.; Lee, J. A.; Fox, C. H.; Bao, Z. N. Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes. Nat. Nanotechnol. 2011, 6, 788–792.

    Article  CAS  Google Scholar 

  41. Kergoat, L.; Piro, B.; Berggren, M.; Horowitz, G.; Pham, M. C. Advances in organic transistor-based biosensors: From organic electrochemical transistors to electrolyte-gated organic field-effect transistors. Anal. Bioanal. Chem. 2012, 402, 1813–1826.

    Article  CAS  Google Scholar 

  42. Yan, Y. J.; Chen, Q. Z.; Wu, X. M.; Wang, X. M.; Li, E. L.; Ke, Y. D.; Liu, Y.; Chen, H. P.; Guo, T. L. High-performance organic electrochemical transistors with nanoscale channel length and their application to artificial synapse. ACS Appl. Mater. Interfaces 2020, 12, 49915–49925.

    Article  CAS  Google Scholar 

  43. Tarabella, G.; Villani, M.; Calestani, D.; Mosca, R.; Iannotta, S.; Zappettini, A.; Coppedè, N. A single cotton fiber organic electrochemical transistor for liquid electrolyte saline sensing. J. Mater. Chem. 2012, 22, 23830–23834.

    Article  CAS  Google Scholar 

  44. Wu, X. Y.; Feng, J. Y.; Deng, J.; Cui, Z. C.; Wang, L. Y.; Xie, S. L.; Chen, C. R.; Tang, C. Q.; Han, Z. Q.; Yu, H. B. et al. Fiber-shaped organic electrochemical transistors for biochemical detections with high sensitivity and stability. Sci. China Chem. 2020, 63, 1281–1288.

    Article  CAS  Google Scholar 

  45. Wang, Y. D.; Qing, X.; Zhou, Q.; Zhang, Y.; Liu, Q. Z.; Liu, K.; Wang, W. W.; Li, M. F.; Lu, Z. T.; Chen, Y. L. et al. The woven fiber organic electrochemical transistors based on polypyrrole nanowires/reduced graphene oxide composites for glucose sensing. Biosens. Bioelectron. 2017, 95, 138–145.

    Article  CAS  Google Scholar 

  46. Müller, C.; Hamedi, M.; Karlsson, R.; Jansson, R.; Marcilla, R.; Hedhammar, M.; Inganäs, O. Woven electrochemical transistors on silk fibers. Adv. Mater. 2011, 23, 898–901.

    Article  Google Scholar 

  47. Kim, Y.; Lim, T.; Kim, C. H.; Yeo, C. S.; Seo, K.; Kim, S. M.; Kim, J.; Park, S. Y.; Ju, S.; Yoon, M. H. Organic electrochemical transistor-based channel dimension-independent single-strand wearable sweat sensors. NPG Asia Mater. 2018, 10, 1086–1095.

    Article  Google Scholar 

  48. Salyk, O.; Viteček, J.; Omasta, L.; Šafaříková, E.; Střiteský, S.; Vala, M.; Weiter, M. Organic electrochemical transistor microplate for real-time cell culture monitoring. Appl. Sci. 2017, 7, 998.

    Article  Google Scholar 

  49. Zhang, M.; Lin, P.; Yang, M.; Yan, F. Fabrication of organic electrochemical transistor arrays for biosensing. Biochim. Biophys. Acta-(BBA)-Gen. Subj. 2013, 1830, 4402–4406.

    Article  CAS  Google Scholar 

  50. Zhang, L. J.; Wang, G. H.; Wu, D.; Xiong, C.; Zheng, L.; Ding, Y. S.; Lu, H. B.; Zhang, G. B.; Qiu, L. Z. Highly selective and sensitive sensor based on an organic electrochemical transistor for the detection of ascorbic acid. Biosens. Bioelectron. 2018, 100, 235–241.

    Article  CAS  Google Scholar 

  51. Qing, X.; Wang, Y. D.; Zhang, Y.; Ding, X. C.; Zhong, W. B.; Wang, D.; Wang, W. W.; Liu, Q. Z.; Liu, K.; Li, M. F. et al. Wearable fiber-based organic electrochemical transistors as a platform for highly sensitive dopamine monitoring. ACS Appl. Mater. Interfaces 2019, 11, 13105–13113.

    Article  CAS  Google Scholar 

  52. Bai, L. M.; Elósegui, C. G.; Li, W. Q.; Yu, P.; Fei, J. J.; Mao, L. Q. Biological applications of organic electrochemical transistors: Electrochemical biosensors and electrophysiology recording. Front. Chem. 2019, 7, 313.

    Article  CAS  Google Scholar 

  53. Tang, H.; Yan, F.; Lin, P.; Xu, J. B.; Chan, H. L. W. Highly sensitive glucose biosensors based on organic electrochemical transistors using platinum gate electrodes modified with enzyme and nanomaterials. Adv. Funct. Mater. 2011, 21, 2264–2272.

    Article  Google Scholar 

  54. Hwang, D. W.; Lee, S.; Seo, M.; Chung, T. D. Recent advances in electrochemical non-enzymatic glucose sensors-a review. Anal. Chim. Acta 2018, 1033, 1–34.

    Article  CAS  Google Scholar 

  55. Nag, A.; Mukhopadhyay, S. C.; Kosel, J. Wearable flexible sensors: A review. IEEE Sens. J. 2017, 17, 3949–3960.

    Article  CAS  Google Scholar 

  56. Li, D. H.; Wang, L.; Ji, W. H.; Wang, H. C.; Yue, X. P.; Sun, Q. Z.; Li, L.; Zhang, C. W.; Liu, J. H.; Lu, G. et al. Embedding silver nanowires into a hydroxypropyl methyl cellulose Film for flexible electrochromic devices with high electromechanical stability. ACS Appl. Mater. Interfaces 2021, 13, 1735–1742.

    Article  CAS  Google Scholar 

  57. Zeglio, E.; Inganäs, O. Active materials for organic electrochemical transistors. Adv. Mater. 2018, 30, 1800941.

    Article  Google Scholar 

  58. Sun, H. D.; Gerasimov, J.; Berggren, M.; Fabiano, S. n-Type organic electrochemical transistors: Materials and challenges. J. Mater. Chem. C 2018, 6, 11778–11784.

    Article  CAS  Google Scholar 

  59. Li, Y. Z.; Wang, N. X.; Yang, A. N.; Ling, H. F.; Yan, F. Biomimicking stretchable organic electrochemical transistor. Adv. Electron. Mater. 2019, 5, 1900566.

    Article  CAS  Google Scholar 

  60. Zhang, D. H.; Ryu, K.; Liu, X. L.; Polikarpov, E.; Ly, J.; Tompson, M. E.; Zhou, C. W. Transparent, conductive, and flexible carbon nanotube films and their application in organic light-emitting diodes. Nano Lett. 2006, 6, 1880–1886.

    Article  CAS  Google Scholar 

  61. Shi, W.; Guo, Y. L.; Liu, Y. Q. When flexible organic field-effect transistors meet biomimetics: A prospective view of the internet of things. Adv. Mater. 2020, 32, 1901493.

    Article  CAS  Google Scholar 

  62. Xu, F.; Wang, X.; Zhu, Y. T.; Zhu, Y. Wavy ribbons of carbon nanotubes for stretchable conductors. Adv. Funct. Mater. 2012, 22, 1279–1283.

    Article  CAS  Google Scholar 

  63. Zhang, Y.; Wang, Y. D.; Qing, X.; Wang, Y.; Zhong, W. B.; Wang, W. W.; Chen, Y. L.; Liu, Q. Z.; Li, M. F.; Wang, D. Fiber organic electrochemical transistors based on multi-walled carbon nanotube and polypyrrole composites for noninvasive lactate sensing. Anal. Bioanal. Chem. 2020, 412, 7515–7524.

    Article  CAS  Google Scholar 

  64. Macrelli, G.; Varshneya, A. K.; Mauro, J. C. Ultra-thin glass as a substrate for flexible photonics. Opt. Mater. 2020, 106, 109994.

    Article  CAS  Google Scholar 

  65. Khang, D. Y.; Jiang, H.; Huang, Y.; Rogers, J. A. A stretchable form of single-crystal silicon for high-performance electronics on rubber substrates. Science 2006, 311, 208–212.

    Article  CAS  Google Scholar 

  66. Seghir, R.; Arscott, S. Extended PDMS stiffness range for flexible systems. Sens. Actuators A:Phys. 2015, 230, 33–39.

    Article  CAS  Google Scholar 

  67. Jeong, S. H.; Zhang, S.; Hjort, K.; Hilborn, J.; Wu, Z. G. PDMS-based elastomer tuned soft, stretchable, and sticky for epidermal electronics. Adv. Mater. 2016, 28, 5830–5836.

    Article  CAS  Google Scholar 

  68. Liaw, D. J.; Hsu, P. N.; Chen, W. H.; Lin, S. L. High glass transitions of new polyamides, polyimides, and poly(amide-imide)s containing a triphenylamine group: Synthesis and characterization. Macromolecules 2020, 35, 4669–4676.

    Article  Google Scholar 

  69. Wang, X. W.; Liu, Z.; Zhang, T. Flexible sensing electronics for wearable/attachable health monitoring. Small 2017, 13, 1602790.

    Article  Google Scholar 

  70. Kaltenbrunner, M.; Sekitani, T.; Reeder, J.; Yokota, T.; Kuribara, K.; Tokuhara, T.; Drack, M.; Schwödiauer, R.; Graz, I.; Bauer-Gogonea, S. et al. An ultra-lightweight design for imperceptible plastic electronics. Nature 2013, 499, 458–463.

    Article  CAS  Google Scholar 

  71. Zhang, X. P.; Ye, T. Y.; Meng, X. H.; Tian, Z. H.; Pang, L. H.; Han, Y. J.; Li, H.; Lu, G.; Xiu, F.; Yu, H. D. et al. Sustainable and transparent fish gelatin films for fxible electroluminescleent devices. ACS Nano 2020, 14, 3876–3884.

    Article  CAS  Google Scholar 

  72. Nomura, K.; Ohta, H.; Takagi, A.; Kamiya, T.; Hirano, M.; Hosono, H. Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature 2004, 432, 488–492.

    Article  CAS  Google Scholar 

  73. Guo, R. S.; Yu, Y.; Zeng, J. F.; Liu, X. Q.; Zhou, X. C.; Niu, L. Y.; Gao, T. T.; Li, K.; Yang, Y.; Zhou, F. et al. Biomimicking topographic elastomeric petals (E-petals) for omnidirectional stretchable and printable electronics. Adv. Sci. 2015, 2, 1400021.

    Article  Google Scholar 

  74. Su, B.; Gong, S.; Ma, Z.; Yap, L. W.; Cheng, W. L. Mimosa-inspired design of a flexible pressure sensor with touch sensitivity. Small 2015, 11, 1886–1891.

    Article  CAS  Google Scholar 

  75. Marian, F.; Gualand, I.; Tessarolo, M.; Fraboni, B.; Scavetta, E. PEDOT: Dye-based. flexible organic electrochemical transistor for highly sensitive pH monitoring. ACS Appl. Mater. Interfaces 2018, 10, 22474–22484.

    Article  Google Scholar 

  76. Yang, A. N.; Li, Y. Z.; Yang, C. X.; Fu, Y.; Wang, N. X.; Li, L.; Yan, F. Fabric organic electrochemical transistors for biosensors. Adv. Mater. 2018, 30, 1800051.

    Article  Google Scholar 

  77. Bihar, E.; Deng, Y. X.; Miyake, T.; Saadaoui, M.; Malliaras, G. G.; Rolandi, M. A disposable paper breathalyzer with an alcohol sensing organic electrochemical transistor. Sci. Rep. 2016, 6, 27582.

    Article  CAS  Google Scholar 

  78. Li, Z. D.; Hu, F. M.; Chen, Z. M.; Huang, J. C.; Chen, G. N.; Chen, R. B.; Wei, M. M.; Lao, K. T.; Hu, J. J.; Zheng, J. T. et al. Fiber-junction design for directional bending sensors. npj Flex. Electron. 2021, 5, 4.

    Article  Google Scholar 

  79. Zhu, B. W.; Wang, H.; Leow, W. R.; Cai, Y. R; Loh, X. J.; Han, M. Y.; Chen, X. D. Silk fibroin for flexible electronic devices. Adv. Mater. 2016, 28, 4250–4265.

    Article  CAS  Google Scholar 

  80. Choudhary, T.; Rajamanickam, G. P.; Dendukuri, D. Woven electrochemical fabric-based test sensors (WEFTS): A new class of multiplexed electrochemical sensors. Lab Chip 2015, 15, 2064–2072.

    Article  CAS  Google Scholar 

  81. Chinnasamy, T.; Segerink, L. I.; Nystrand, M.; Gantelius, J.; Andersson Svahn, H. Point-of-care vertical flow allergen microarray assay: Proof of concept. Clin. Chem. 2014, 60, 1209–1216.

    Article  CAS  Google Scholar 

  82. Yang, B.; Li, W. W.; Zhang, M.; Wang, L.; Ding, X. Y. Recycling of high-value-added aramid nanofibers from waste aramid resources via a feasible and cost-effective approach. ACS Nano 2021, 15, 7195–7207.

    Article  CAS  Google Scholar 

  83. Wang, M.; Wang, Y. L.; Gao, B. B.; Bian, Y. F.; Liu, X. J.; He, Z. Z.; Zeng, Y.; Du, X.; Gu, Z. Z. Fast strategy to functional paper surfaces. ACS Appl. Mater. Interfaces 2019, 11, 14445–14456.

    Article  CAS  Google Scholar 

  84. Pelton, R. Bioactive paper provides a low-cost platform for diagnostics. TrAC Trends Anal. Chem. 2009, 28, 925–942.

    Article  CAS  Google Scholar 

  85. Ifuku, S.; Nogi, M.; Abe, K.; Handa, K.; Nakatsubo, F.; Yano, H. Surface modification of bacterial cellulose nanofibers for property enhancement of optically transparent composites: Dependence on acetyl-group DS. Biomacromolecules 2007, 8, 1973–1978.

    Article  CAS  Google Scholar 

  86. Li, C.; Boban, M.; Snyder, S. A.; Kobaku, S. P. R.; Kwon, G.; Mehta, G.; Tuteja, A. Paper-based surfaces with extreme wettabilities for novel, open-channel microfluidic devices. Adv. Funct. Mater. 2016, 26, 6121–6131.

    Article  CAS  Google Scholar 

  87. Guo, J. Q.; Fang, W. W.; Welle, A.; Feng, W. Q.; Filpponen, I.; Rojas, O. J.; Levkin, P. A. Superhydrophobic and slippery lubricant-infused flexible transparent nanocellulose films by photoinduced thiol-ene functionalization. ACS Appl. Mater. Interfaces 2016, 8, 34115–34122.

    Article  CAS  Google Scholar 

  88. Magliulo, M.; Mulla, M. Y.; Singh, M.; Macchia, E.; Tiwari, A.; Torsi, L.; Manoli, K. Printable and flexible electronics: From TFTs to bioelectronic devices. J. Mater. Chem. C 2015, 3, 12347–12363.

    Article  CAS  Google Scholar 

  89. Yu, K. J.; Yan, Z.; Han, M. D.; Rogers, J. A. Inorganic semiconducting materials for flexible and stretchable electronics. npj Flex. Electron. 2017, 1, 4.

    Article  Google Scholar 

  90. Naghdi, S.; Rhee, K. Y.; Hui, D.; Park, S. J. A review of conductive metal nanomaterials as conductive, transparent, and flexible coatings, thin films, and conductive fillers: Different deposition methods and applications. Coatings 2018, 8, 278.

    Article  Google Scholar 

  91. Wahl, T.; Hanisch, J.; Ahlswede, E. Comparison of the Al back contact deposited by sputtering, e-beam, or thermal evaporation for inverted perovskite solar cells. J. Phys. D:Appl. Phys. 2018, 51, 135502.

    Article  Google Scholar 

  92. Kujala, M.; Kololuoma, T.; Keskinen, J.; Lupo, D.; Mäntysalo, M.; Kraft, T. M. Bending reliability of screen-printed vias for a flexible energy module. npj Flex. Electron. 2020, 4, 24.

    Article  Google Scholar 

  93. Jiang, J. K.; Bao, B.; Li, M. Z.; Sun, J. Z.; Zhang, C.; Li, Y.; Li, F. Y.; Yao, X.; Song, Y. L. Fabrication of transparent multilayer circuits by inkjet printing. Adv. Mater. 2016, 28, 1420–1426.

    Article  CAS  Google Scholar 

  94. Bowden, N.; Brittain, S.; Evans, A. G.; Hutchinson, J. W.; Whitesides, G. M. Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer. Nature 1998, 393, 146–149.

    Article  CAS  Google Scholar 

  95. Liu, J. W.; Wang, J. L.; Wang, Z. H.; Huang, W. R.; Yu, S. H. Manipulating nanowire assembly for flexible transparent electrodes. Angew. Chem., Int. Ed. 2014, 53, 13477–13482.

    Article  CAS  Google Scholar 

  96. Xiong, W. W.; Liu, H. L.; Chen, Y. Z.; Zheng, M. L.; Zhao, Y. Y.; Kong, X. B.; Wang, Y.; Zhang, X. Q.; Kong, X. Y.; Wang, P. F. et al. Highly conductive, air-stable silver nanowire@iongel composite films toward flexible transparent electrodes. Adv. Mater. 2016, 28, 7167–7172.

    Article  CAS  Google Scholar 

  97. Madaria, A. R.; Kumar, A.; Ishikawa, F. N.; Zhou, C. W. Uniform, highly conductive, and patterned transparent films of a percolating silver nanowire network on rigid and flexible substrates using a dry transfer technique. Nano Res. 2010, 3, 564–573.

    Article  CAS  Google Scholar 

  98. Park, J. H.; Hwang, G. T.; Kim, S.; Seo, J.; Park, H. J.; Yu, K.; Kim, T. S.; Lee, K. J. Flash-induced self-limited plasmonic welding of silver nanowire network for transparent flexible energy harvester. Adv. Mater. 2017, 29, 1603473.

    Article  Google Scholar 

  99. Tokuno, T.; Nogi, M.; Karakawa, M.; Jiu, J. T.; Nge, T. T.; Aso, Y.; Suganuma, K. Fabrication of silver nanowire transparent electrodes at room temperature. Nano Res. 2011, 4, 1215–1222.

    Article  CAS  Google Scholar 

  100. Hwang, Y. T.; Chung, W. H.; Jang, Y. R.; Kim, H. S. Intensive plasmonic flash light sintering of copper nanoinks using a bandpass light filter for highly electrically conductive electrodes in printed electronics. ACS Appl. Mater. Interfaces 2016, 8, 8591–8599.

    Article  CAS  Google Scholar 

  101. Kang, H.; Kim, Y.; Cheon, S.; Yi, G. R.; Cho, J. H. Halide welding for silver nanowire network electrode. ACS Appl. Mater. Interfaces 2017, 9, 30779–30785.

    Article  CAS  Google Scholar 

  102. Ahn, J.; Seo, J. W.; Kim, J. Y.; Lee, J.; Cho, C.; Kang, J.; Choi, S. Y.; Lee, J. Y. Self-supplied nano-fusing and transferring metal nanostructures via surface oxide reduction. ACS Appl. Mater. Interfaces 2016, 8, 1112–1119.

    Article  CAS  Google Scholar 

  103. Kang, H.; Song, S. J.; Sul, Y. E.; An, B. S.; Yin, Z. X.; Choi, Y.; Pu, L.; Yang, C. W.; Kim, Y. S.; Cho, S. M. et al. Epitaxial-growth-induced junction welding of silver nanowire network electrodes. ACS Nano 2018, 12, 4894–4902.

    Article  CAS  Google Scholar 

  104. Garnett, E. C.; Cai, W. S.; Cha, J. J.; Mahmood, F.; Connor, S. T.; Greyson Christoforo, M.; Cui, Y.; McGehee, M. D.; Brongersma, M. L. Self-limited plasmonic welding of silver nanowire junctions. Nat. Mater. 2012, 11, 241–249.

    Article  CAS  Google Scholar 

  105. Liu, Y.; Zhang, J. M.; Gao, H.; Wang, Y.; Liu, Q. X.; Huang, S. Y.; Guo, C. F.; Ren, Z. F. Capillary-force-induced cold welding in silver-nanowire-based flexible transparent electrodes. Nano Lett. 2017, 17, 1090–1096.

    Article  CAS  Google Scholar 

  106. Crispin, X.; Jakobsson, F. L. E.; Crispin, A.; Grim, P. C. M.; Andersson, P.; Volodin, A.; van Haesendonck, C.; Van der Auweraer, M.; Salaneck, W. R.; Berggren, M. The origin of the high conductivity of poly(3, 4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT-PSS) plastic electrodes. Chem. Mater. 2006, 18, 4354–4360.

    Article  CAS  Google Scholar 

  107. Rogers, J. A.; Someya, T.; Huang, Y. G. Materials and mechanics for stretchable electronics. Science 2010, 327, 1603–1607.

    Article  CAS  Google Scholar 

  108. Ferrari, L. M.; Ismailov, U.; Badier, J. M.; Greco, F.; Ismailova, E. Conducting polymer tattoo electrodes in clinical electro- and magneto-encephalography. npj Flex. Electron. 2020, 4, 4.

    Article  CAS  Google Scholar 

  109. Yang, Y. B.; Yang, X. D.; Tan, Y. N.; Yuan, Q. Recent progress in flexible and wearable bio-electronics based on nanomaterials. Nano Res. 2017, 10, 1560–1583.

    Article  Google Scholar 

  110. Liu, K.; Guo, Y. L.; Liu, Y. Q. Recent progress in stretchable organic field-effect transistors. Sci. China Technol. Sci. 2019, 62, 1255–1276.

    Article  CAS  Google Scholar 

  111. Kang, Y. J.; Chung, H.; Kim, M. S.; Kim, W. Enhancement of CNT/PET film adhesion by nano-scale modification for flexible all-solid-state supercapacitors. Appl. Surf. Sci. 2015, 355, 160–165.

    Article  CAS  Google Scholar 

  112. Kaidarova, B. A.; Liu, W. H.; Swanepoel, L.; Almansouri, A.; Geraldi, N. R.; Duarte, C. M.; Kosel, J. Flexible hall sensor made of laser-scribed graphene. npj Flex. Electron. 2021, 5, 2.

    Article  CAS  Google Scholar 

  113. Chen, T.; Xue, Y. H.; Roy, A. K.; Dai, L. M. Transparent and stretchable high-performance supercapacitors based on wrinkled graphene electrodes. ACS Nano 2014, 8, 1039–1046.

    Article  CAS  Google Scholar 

  114. Lee, P.; Ham, J.; Lee, J.; Hong, S.; Han, S.; Suh, Y. D.; Lee, S. E.; Yeo, J.; Lee, S. S.; Lee, D. et al. Highly stretchable or transparent conductor fabrication by a hierarchical multiscale hybrid nanocomposite. Adv. Funct. Mater. 2014, 24, 5671–5678.

    Article  CAS  Google Scholar 

  115. Wang, G. J. N.; Gasperini, A.; Bao, Z. N. Stretchable polymer semiconductors for plastic electronics. Adv. Electron. Mater. 2018, 4, 1700429.

    Article  Google Scholar 

  116. Sugiyama, F.; Kleinschmidt, A. T.; Kayser, L. V.; Rodriquez, D.; Finn III, M.; Alkhadra, M. A.; Wan, J. M. H.; Ramírez, J.; Chiang, A. S. C.; Root, S. E. et al. Effects of flexibility and branching of side chains on the mechanical properties of low-bandgap conjugated polymers. Polym. Chem. 2018, 9, 4354–4363.

    Article  CAS  Google Scholar 

  117. Moser, M.; Hidalgo, T. C.; Surgailis, J.; Gladisch, J.; Ghosh, S.; Sheelamanthula, R.; Thiburce, Q.; Giovannitti, A.; Salleo, A.; Gasparini, N. et al. Side chain redistribution as a strategy to boost organic electrochemical transistor performance and stability. Adv. Mater. 2020, 32, 2002748.

    Article  CAS  Google Scholar 

  118. Flagg, L. Q.; Bischak, C. G.; Onorato, J. W.; Rashid, R. B.; Luscombe, C. K.; Ginger, D. S. Polymer crystallinity controls water uptake in glycol side-chain polymer Organic Electrochemical Transistors. J. Am. Chem. Soc. 2019, 141, 4345–4354.

    Article  CAS  Google Scholar 

  119. Giovannitti, A.; Sbircea, D. T.; Inal, S.; Nielsen, C. B.; Bandiello, E.; Hanifi, D. A.; Sessolo, M.; Malliaras, G. G.; McCulloch, I.; Rivnay, J. Controlling the mode of operation of organic transistors through side-chain engineering. Proc. Natl. Acad. Sci. USA 2016, 113, 12017–12022.

    Article  CAS  Google Scholar 

  120. Paterson, A. F.; Singh, S.; Fallon, K. J.; Hodsden, T.; Han, Y.; Schroeder, B. C.; Bronstein, H.; Heeney, M.; McCulloch, I.; Anthopoulos, T. D. Recent progress in high-mobility organic transistors: A reality check. Adv. Mater. 2018, 30, 1801079.

    Article  Google Scholar 

  121. Zhu, Z. Y.; Song, H. J.; Xu, J. K.; Liu, C. C.; Jiang, Q. L.; Shi, H. Significant conductivity enhancement of PEDOT: PSS films treated with lithium salt solutions. J. Mater. Sci.: Mater. Electron. 2015, 26, 429–434.

    CAS  Google Scholar 

  122. Nightingale, J.; Pitsalidis, C.; Pappa, A. M.; Tan, E.; Stewart, K.; Owens, R. M.; Kim, J. S. Small molecule additive for low-power accumulation mode organic electrochemical transistors. J. Mater. Chem. C 2020, 8, 8846–8855.

    Article  CAS  Google Scholar 

  123. Keene, S. T.; van der Pol, T. P. A.; Zakhidov, D.; Weijtens, C. H. L.; Janssen, R. A. J.; Salleo, A.; van de Burgt, Y. Enhancementmode PEDOT: PSS organic electrochemical transistors using molecular de-doping. Adv. Mater. 2020, 32, 2000270.

    Article  CAS  Google Scholar 

  124. Döbbelin, M.; Marcilla, R.; Salsamendi, M.; Pozo-Gonzalo, C.; Carrasco, P. M.; Pomposo, J. A.; Mecerreyes, D. Influence of ionic liquids on the electrical conductivity and morphology of PEDOT: PSS films. Chem. Mater. 2007, 19, 2147–2149.

    Article  Google Scholar 

  125. Wu, X. H.; Surendran, A.; Ko, J.; Filonik, O.; Herzig, E. M.; Müller-Buschbaum, P.; Leong, W. L. Ionic-liquid doping enables high transconductance, fast response time, and high ion sensitivity in organic electrochemical transistors. Adv. Mater. 2019, 31, 1805544.

    Article  Google Scholar 

  126. Paterson, A. F.; Savva, A.; Wustoni, S.; Tsetseris, L.; Paulsen, B. D.; Faber, H.; Emwas, A. H.; Chen, X. X.; Nikiforidis, G.; Hidalgo, T. C. et al. Water stable molecular n-doping produces organic electrochemical transistors with high transconductance and record stability. Nat. Commun. 2020, 11, 3004.

    Article  CAS  Google Scholar 

  127. Kee, S.; Kim, N.; Kim, B. S.; Park, S.; Jang, Y. H.; Lee, S. H.; Kim, J.; Kim, J.; Kwon, S.; Lee, K. Controlling molecular ordering in aqueous conducting polymers using ionic liquids. Adv. Mater. 2016, 28, 8625–8631.

    Article  CAS  Google Scholar 

  128. Liao, J. J.; Si, H. W.; Zhang, X. D.; Lin, S. W. Functional sensing interfaces of PEDOT: PSS organic electrochemical transistors for chemical and biological sensors: A mini review. Sensors 2019, 19, 218.

    Article  Google Scholar 

  129. Wang, N. X.; Yang, A. N.; Fu, Y.; Li, Y. Z.; Yan, F. Functionalized organic thin film transistors for biosensing. Acc. Chem. Res. 2019, 52, 277–287.

    Article  CAS  Google Scholar 

  130. Kim, D. J.; Lee, N. E.; Park, J. S.; Park, I. J.; Kim, J. G.; Cho, H. J. Organic electrochemical transistor based immunosensor for prostate specific antigen (PSA) detection using gold nanoparticles for signal amplification. Biosens. Bioelectron. 2010, 25, 2477–2482.

    Article  CAS  Google Scholar 

  131. Shin, M.; Oh, J. Y.; Byun, K. E.; Lee Y. J.; Kim B.; Baik H. K.; Park J. J.; Jeong U. Polythiophene nanofibril bundles surface-embedded in elastomer: A route to a highly stretchable active channel layer. Adv. Mater. 2015, 27, 1255–1261.

    Article  CAS  Google Scholar 

  132. Song, E.; Kang, B.; Choi, H. H.; Sin, D. H.; Lee H.; Lee W. H.; Cho, K. Stretchable and transparent organic semiconducting thin film with conjugated polymer nanowires embedded in an elastomeric matrix. Adv. Electron. Mater. 2016, 2, 1500250.

    Article  Google Scholar 

  133. Lu, L. J.; Jiang, C. P.; Hu, G. S.; Liu, J. Q.; Yang, B. Flexible noncontact sensing for human-machine interaction. Adv. Mater. 2021, 33, 2100218.

    Article  CAS  Google Scholar 

  134. Wu, Y. H.; Tseng, P. Y.; Hsieh, P. Y.; Chou, H. T.; Tai, N. H. High mobility of graphene-based flexible transparent field effect transistors doped with TiO2 and nitrogen-doped TiO2. ACS Appl. Mater. Interfaces 2015, 7, 9453–9461.

    Article  CAS  Google Scholar 

  135. de Oliveira, R. F.; Livio, P. A.; Montes-García, V.; Ippolito, S.; Eredia, M.; Fanjul-Bolado, P.; García, M. B. G.; Casalini, S.; Samorì, P. Liquid-gated transistors based on reduced graphene oxide for flexible and wearable electronics. Adv. Funct. Mater. 2019, 29, 1905375.

    Article  Google Scholar 

  136. Park, J. W.; Park, S. J.; Kwon, O. S.; Lee, C.; Jang, J. Polypyrrole nanotube embedded reduced graphene oxide transducer for field-effect transistor-type H2O2 biosensor. Anal. Chem. 2014, 86, 1822–1828.

    Article  CAS  Google Scholar 

  137. Chaharsoughi, M. S.; Edberg, J.; Ersman, P. A.; Crispin, X.; Zhao, D.; Jonsson, M. P. Ultrasensitive electrolyte-assisted temperature sensor. npj Flex. Electron. 2020, 4, 23.

    Article  Google Scholar 

  138. Chen, S.; Surendran, A.; Wu, X. H.; Leong, W. L. Contact modulated ionic transfer doping in all-solid-state organic electrochemical transistor for ultra-high sensitive tactile perception at low operating voltage. Adv. Funct. Mater. 2020, 30, 2006186.

    Article  CAS  Google Scholar 

  139. del Agua, I.; Porcarelli, L.; Curto, V. F.; Sanchez-Sanchez, A.; Ismailova, E.; Malliaras, G. G.; Mecerreyes, D. A Na+ conducting hydrogel for protection of organic electrochemical transistors. J. Mater. Chem. B 2018, 6, 2901–2906.

    Article  CAS  Google Scholar 

  140. Jo, Y. J.; Kwon, K. Y.; Khan, Z. U.; Crispin, X.; Kim, T. I. Gelatin hydrogel-based organic electrochemical transistors and their integrated logic circuits. ACS Appl. Mater. Interfaces 2018, 10, 39083–39090.

    Article  CAS  Google Scholar 

  141. Liao, C. Z.; Mak, C.; Zhang, M.; Chan, H. L. W.; Yan, F. Flexible organic electrochemical transistors for highly selective enzyme biosensors and used for saliva testing. Adv. Mater. 2015, 27, 676–681.

    Article  CAS  Google Scholar 

  142. Wustoni, S.; Savva, A.; Sun, R. F.; Bihar, E.; Inal, S. Enzyme-free detection of glucose with a hybrid conductive gel electrode. Adv. Mater. Interfaces 2019, 6, 1800928.

    Article  Google Scholar 

  143. Ji, W.; Wu, D. Q.; Tang, W.; Xi, X.; Su, Y. Z.; Guo, X. J.; Liu, R. L. Carbonized silk fabric-based flexible organic electrochemical transistors for highly sensitive and selective dopamine detection. Sens. Actuators B:Chem. 2020, 304, 127414.

    Article  CAS  Google Scholar 

  144. Keene, S. T.; Fogarty, D.; Cooke, R.; Casadevall, C. D.; Salleo, A.; Parlak, O. Wearable organic electrochemical transistor patch for multiplexed sensing of calcium and ammonium ions from human perspiration. Adv. Healthc. Mater. 2019, 8, 1901321.

    Article  CAS  Google Scholar 

  145. Scheiblin, G.; Coppard, R.; Owens, R. M.; Mailley, P.; Malliaras, G. G. Referenceless pH sensor using organic electrochemical transistors. Adv. Mater. Technol. 2017, 2, 1600141.

    Article  Google Scholar 

  146. Nair, R. R. Glucose sensing and hybrid instrumentation based on printed organic electrochemical transistors. Flex. Print. Electron. 2020, 5, 015001.

    Article  CAS  Google Scholar 

  147. Nair, R. R. Organic electrochemical transistor on paper for the detection of halide anions in biological analytes. Flex. Print. Electron. 2020, 5, 045004.

    Article  CAS  Google Scholar 

  148. Fan, J. X.; Montemagno, C.; Gupta, M. 3D printed high transconductance organic electrochemical transistors on flexible substrates. Org. Electron. 2019, 73, 122–129.

    Article  CAS  Google Scholar 

  149. Yan, Y. J.; Wu, X. M.; Chen, Q. Z.; Liu, Y. Q.; Chen, H. P.; Guo, T. L. High-performance low-voltage flexible photodetector arrays based on all-solid-state organic electrochemical transistors for photosensing and imaging. ACS Appl. Mater. Interfaces 2019, 11, 20214–20224.

    Article  CAS  Google Scholar 

  150. Zhang, S. M.; Hubis, E.; Girard, C.; Kumar, P.; DeFranco, J.; Cicoira, F. Water stability and orthogonal patterning of flexible micro-electrochemical transistors on plastic. J. Mater. Chem. C 2016, 4, 1382–1385.

    Article  CAS  Google Scholar 

  151. Wu, X. H.; Surendran, A.; Moser, M.; Chen, S.; Muhammad, B. T.; Maria, I. P.; McCulloch, I.; Leong, W. L. Universal spraydeposition process for scalable, high-performance, and stable organic electrochemical transistors. ACS Appl. Mater. Interfaces 2020, 12, 20757–20764.

    Article  CAS  Google Scholar 

  152. Gooding, J. J. Nanostructuring electrodes with carbon nanotubes: A review on electrochemistry and applications for sensing. Electrochim. Acta 2005, 50, 3049–3060.

    Article  CAS  Google Scholar 

  153. Ikariyama, Y.; Yamauchi, S.; Yukiashi, T.; Ushioda, H. One step fabrication of microbiosensor prepared by the codeposition of enzyme and platinum particles. Anal. Lett. 1987, 20, 1791–1801.

    Article  CAS  Google Scholar 

  154. Wang, Y.; Xiong, C.; Qu, H.; Chen, W.; Ma, A. J.; Zheng, L. Highly sensitive real-time detection of tyrosine based on organic electrochemical transistors with poly-(diallyldimethylammonium chloride), gold nanoparticles and multi-walled carbon nanotubes. J. Electroanal. Chem. 2017, 799, 321–326.

    Article  CAS  Google Scholar 

  155. Alexeyeva, N.; Tammeveski, K. Electroreduction of oxygen on gold nanoparticle/PDDA-MWCNT nanocomposites in acid solution. Anal. Chim. Acta 2008, 618, 140–146.

    Article  CAS  Google Scholar 

  156. Guo, X.; Liu, J.; Liu, F. Y.; She, F.; Zheng, Q.; Tang, H.; Ma, M.; Yao, S. Z. Label-free and sensitive sialic acid biosensor based on organic electrochemical transistors. Sens. Actuators B:Chem. 2017, 240, 1075–1082.

    Article  CAS  Google Scholar 

  157. Tang, H.; Yan, F.; Tai, Q. D.; Chan, H. L. W. The improvement of glucose bioelectrocatalytic properties of platinum electrodes modified with electrospun TiO2 nanofibers. Biosens. Bioelectron. 2010, 25, 1646–1651.

    Article  CAS  Google Scholar 

  158. Ji, X. D.; Lau, H. Y.; Ren, X. C.; Peng, B. Y.; Zhai, P.; Feng, S. P.; Chan, P. K. L. Highly sensitive metabolite biosensor based on organic electrochemical transistor integrated with microfluidic channel and poly(N-vinyl-2-pyrrolidone)-capped platinum nanoparticles. Adv. Mater. Technol. 2016, 1, 1600042.

    Article  Google Scholar 

  159. Kochmann, S.; Hirsch, T.; Wolfbeis, O. S. Graphenes in chemical sensors and biosensors. TrAC Trends Anal. Chem. 2012, 39, 87–113.

    Article  CAS  Google Scholar 

  160. Zhang, J. L.; Zhang, F.; Yang, H. J.; Huang, X. L.; Liu, H.; Zhang, J. Y.; Guo, S. W. Graphene oxide as a matrix for enzyme immobilization. Langmuir 2010, 26, 6083–6085.

    Article  CAS  Google Scholar 

  161. Jiang, Y.; Wang, A. Y.; Kan, J. Q. Selective uricase biosensor based on polyaniline synthesized in ionic liquid. Sens. Actuators B:Chem. 2007, 124, 529–534.

    Article  CAS  Google Scholar 

  162. Marquez, A. V.; McEvoy, N.; Pakdel, A. Organic electrochemical transistors (OECTs) toward flexible and wearable bioelectronics. Molecules 2020, 25, 5288.

    Article  CAS  Google Scholar 

  163. Gao, W.; Emaminejad, S.; Nyein, H. Y. Y.; Challa, S.; Chen, K.; Peck, A.; Fahad, H. M.; Ota, H.; Shiraki, H.; Kiriya, D. et al. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 2016, 529, 509–514.

    Article  CAS  Google Scholar 

  164. Matzeu, G.; Florea, L.; Diamond, D. Advances in wearable chemical sensor design for monitoring biological fluids. Sens. Actuators B:Chem. 2015, 211, 403–418.

    Article  CAS  Google Scholar 

  165. Yang, Y. R.; Gao, W. Wearable and flexible electronics for continuous molecular monitoring. Chem. Soc. Rev. 2019, 48, 1465–1491.

    Article  CAS  Google Scholar 

  166. Said, E.; Robinson, N. D.; Nilsson, D.; Svensson, P. O.; Berggren, M. Visualizing the electric field in electrolytes using electrochromism from a conjugated polymer. Electrochem. Solid-State Lett. 2005, 8, H12–H16.

  167. Shapiro, N. I.; Howell, M. D.; Talmor, D.; Nathanson, L. A.; Lisbon A.; Wolfe R. E.; Weiss, J. W. Serum lactate as a predictor of mortality in emergency department patients with infection. Ann. Emerg. Med. 2005, 45, 524–528.

    Article  Google Scholar 

  168. Vacca, A.; Mascia, M.; Rizzardini, S.; Palmas, S.; Mais, L. Coating of gold substrates with polyaniline through electrografting of aryl diazonium salts. Electrochim. Acta 2014, 126, 81–89.

    Article  CAS  Google Scholar 

  169. Majak, D.; Fan, J. X.; Kang, S.; Gupta, M. Delta-9-tetrahydrocannabinol (Δ9-THC) sensing using an aerosol jet printed organic electrochemical transistor (OECT). J. Mater. Chem. B 2021, 9, 2107–2117.

    Article  CAS  Google Scholar 

  170. Lei, H. W.; Wu, B. L.; Cha, C. S.; Kita, H. Electro-oxidation of glucose on platinum in alkaline solution and selective oxidation in the presence of additives. J. Electroanal. Chem. 1995, 382, 103–110.

    Article  Google Scholar 

  171. Michałowski, J.; Hałaburda, P. Flow-injection chemiluminescence determination of epinephrine in pharmaceutical preparations using raw apple juice as enzyme source. Talanta 2001, 55, 1165–1171.

    Article  Google Scholar 

  172. Coppedè, N.; Tarabella, G.; Villani, M.; Calestani, D.; Iannotta, S.; Zappettini, A. Human stress monitoring through an organic cotton-fiber biosensor. J. Mater. Chem. B 2014, 2, 5620–5626.

    Article  Google Scholar 

  173. Mak, C. H.; Liao, C. Z.; Fu, Y.; Zhang, M.; Tang, C. Y.; Tsang, Y. H.; Chan, H. L. W.; Yan, F. Highly-sensitive epinephrine sensors based on organic electrochemical transistors with carbon nanomaterial modified gate electrodes. J. Mater. Chem. C 2015, 3, 6532–6538.

    Article  CAS  Google Scholar 

  174. Robinson, D. L.; Hermans, A.; Seipel, A. T.; Wightman, R. M. Monitoring rapid chemical communication in the brain. Chem. Rev. 2008, 108, 2554–2584.

    Article  CAS  Google Scholar 

  175. Jackowska, K.; Krysinski, P. New trends in the electrochemical sensing of dopamine. Anal. Bioanal. Chem. 2013, 405, 3753–3771.

    Article  CAS  Google Scholar 

  176. Schultz, W. Dopamine reward prediction-error signalling: A two-component response. Nat. Rev. Neurosci. 2016, 17, 183–195.

    Article  CAS  Google Scholar 

  177. Gualandi, I.; Tonelli, D.; Mariani, F.; Scavetta, E.; Marzocchi, M.; Fraboni, B. Selective detection of dopamine with an all PEDOT: PSS organic electrochemical transistor. Sci. Rep. 2016, 6, 35419.

    Article  CAS  Google Scholar 

  178. Currano, L. J.; Sage, F. C.; Hagedon, M.; Hamilton, L.; Patrone, J.; Gerasopoulos, K. Wearable sensor system for detection of lactate in sweat. Sci. Rep. 2018, 8, 15890.

    Article  Google Scholar 

  179. Katsounaros, I.; Schneider, W. B.; Meier, J. C.; Benedikt, U.; Biedermann, P. U.; Auer, A. A.; Mayrhofer, K. J. J. Hydrogen peroxide electrochemistry on platinum: Towards understanding the oxygen reduction reaction mechanism. Phys. Chem. Chem. Phys. 2012, 14, 7384–7391.

    Article  CAS  Google Scholar 

  180. Lin, P.; Yan, F.; Yu, J. J.; Chan, H. L. W.; Yang, M. The application of organic electrochemical transistors in cell-based biosensors. Adv. Mater. 2010, 22, 3655–3660.

    Article  CAS  Google Scholar 

  181. Frizzell, R. A.; Hanrahan, J. W. Physiology of epithelial chloride and fluid secretion. Cold Spring Harb. Perspect. Med. 2012, 2, a009563.

    Article  Google Scholar 

  182. Yao, C. L.; Xie, C. Y.; Lin, P.; Yan, F.; Huang, P. B.; Hsing, I. M. Organic electrochemical transistor array for recording transepithelial ion transport of human airway epithelial cells. Adv. Mater. 2013, 25, 6575–6580.

    Article  CAS  Google Scholar 

  183. Diacci, C.; Abedi, T.; Lee, J. W.; Gabrielsson, E. O.; Berggren, M.; Simon, D. T.; Niittylä, T.; Stavrinidou, E. Diurnal in vivo xylem sap glucose and sucrose monitoring using implantable organic electrochemical transistor sensors. iScience 2021, 24, 101966.

    Article  CAS  Google Scholar 

  184. Cea, C.; Spyropoulos, G. D.; Jastrzebska-Perfect, P.; Ferrero, J. J.; Gelinas, J. N.; Khodagholy, D. Enhancement-mode ion-based transistor as a comprehensive interface and real-time processing unit for in vivo electrophysiology. Nat. Mater. 2020, 19, 679–686.

    Article  CAS  Google Scholar 

  185. Yang, S. Y.; DeFranco, J. A.; Sylvester, Y. A.; Gobert, T. J.; Macaya, D. J.; Owens, R. M.; Malliaras, G. G. Integration of a surface-directed microfluidic system with an organic electrochemical transistor array for multi-analyte biosensors. Lab Chip 2009, 9, 704–708.

    Article  CAS  Google Scholar 

  186. Khodagholy, D.; Gurfinkel, M.; Stavrinidou, E.; Leleux, P.; Herve, T.; Sanaur, S.; Malliaras, G. G. High speed and high density organic electrochemical transistor arrays. Appl. Phys. Lett. 2011, 99, 163304.

    Article  Google Scholar 

  187. Lee, W.; Kim, D.; Rivnay, J.; Matsuhisa, N.; Lonjaret, T.; Yokota, T.; Yawo, H.; Sekino, M.; Malliaras, G. G.; Someya, T. Integration of organic electrochemical and field-effect transistors for ultraflexible, high temporal resolution electrophysiology arrays. Adv. Mater. 2016, 28, 9722–9728.

    Article  CAS  Google Scholar 

  188. Wang, H. C.; Zhou, R. C.; Li, D. H.; Zhang, L. R.; Ren, G. Z.; Wang, L.; Liu, J. H.; Wang, D. Y.; Tang, Z. H.; Lu, G. et al. High-performance foam-shaped strain sensor based on carbon nanotubes and Ti3C2Tx MXene for the monitoring of human activities. ACS Nano 2021, 15, 9690–9700.

    Article  Google Scholar 

  189. Sun, Q. Z.; Wang, L.; Yue, X. P.; Zhang, L. R.; Ren, G. Z.; Li, D. H.; Wang, H. C.; Han, Y. J.; Xiao, L. L.; Lu, G. et al. Fully sustainable and high-performance fish gelatin-based triboelectric nanogenerator for wearable movement sensing and human-machine interaction. Nano Energy 2021, 89, 106329.

    Article  CAS  Google Scholar 

  190. Savva, A.; Cendra, C.; Giugni, A.; Torre, B.; Surgailis, J.; Ohayon, D.; Giovannitti, A.; McCulloch, I.; Di Fabrizio, E.; Salleo, A. et al. Influence of water on the performance of organic electrochemical transistors. Chem. Mater. 2019, 31, 927–937.

    Article  CAS  Google Scholar 

  191. Zhai, X. T.; Zhang, R. X.; Sheng, H. X.; Wang, J.; Zhu, Y. M.; Lu, Z. C.; Li, Z. Y.; Huang, X.; Li, H.; Lu, G. Direct observation of the light-induced exfoliation of molybdenum disulfide sheets in water medium. ACS Nano 2021, 15, 5661–5670.

    Article  CAS  Google Scholar 

  192. Chen, Y. Q.; Li, Z. Y.; Huang, X.; Lu, G.; Huan, W. Single-molecule mapping of catalytic reactions on heterostructures. Nano Today 2020, 34, 100957.

    Article  CAS  Google Scholar 

  193. Mariani, F.; Conzuelo, F.; Cramer, T.; Gualandi, I.; Possanzini, L.; Tessarolo, M.; Fraboni, B.; Schuhmann, W.; Scavetta, E. Microscopic determination of carrier density and mobility in working organic electrochemical transistors. Small 2019, 15, 1902534.

    Article  CAS  Google Scholar 

  194. Kim, J.; Sempionatto, J. R.; Imani, S.; Hartel, M. C.; Barfidokht, A.; Tang, G. D.; Campbell, A. S.; Mercier, P. P.; Wang, J. Simultaneous monitoring of sweat and interstitial fluid using a single wearable biosensor platform. Adv. Sci. 2018, 5, 1800880.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key R&D Program of China (No. 2017YFA0204700), the National Natural Science Foundation of China (No. 11974180), the Joint Research Funds of Department of Science & Technology of Shaanxi Province and Northwestern Polytechnical University (No. 2020GXLH-Z-021), the China-Sweden Joint Mobility Project (No. 51811530018), and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gang Lu, Hai-Dong Yu or Wei Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Yue, X., Sun, Q. et al. Flexible organic electrochemical transistors for chemical and biological sensing. Nano Res. 15, 2433–2464 (2022). https://doi.org/10.1007/s12274-021-3856-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3856-3

Keywords