Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Efficient flexible perovskite solar cells and modules using a stable SnO2-nanocrystal isopropanol dispersion

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

An Erratum to this article was published on 28 November 2023

This article has been updated

Abstract

The outstanding advantages of lightweight and flexibility enable flexible perovskite solar cells (PSCs) to have great application potential in mobile energy devices. Due to the low cost, low-temperature processibility, and high electron mobility, SnO2 nanocrystals have been widely employed as the electron transport layer in flexible PSCs. To prepare high-quality SnO2 layers, a monodispersed nanocrystal solution is normally used. However, the SnO2 nanocrystals can easily aggregate, especially after long periods of storage. Herein, we develop a green and cost-effective strategy for the synthesis of high-quality SnO2 nanocrystals at low temperatures by introducing small molecules of glycerol, obtaining a stable and well-dispersed SnO2-nanocrystal isopropanol dispersion successfully. Due to the enhanced dispersity and super wettability of this alcohol-based SnO2-nanocrystal solution, large-area smooth and dense SnO2 films are easily deposited on the plastic conductive substrate. Furthermore, this contributes to effective charge transfer and suppressed non-radiative recombination at the interface between the SnO2 and perovskite layers. As a result, a greatly enhanced power conversion efficiency (PCE) of 21.8% from 19.2% is achieved for small-area flexible PSCs. A large-area 5 cm × 5 cm flexible perovskite solar mini-module with a champion PCE of 16.5% and good stability is also demonstrated via this glycerol-modified SnO2-nanocrystal isopropanol dispersion approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

References

  1. Stranks, S. D.; Eperon, G. E.; Grancini, G.; Menelaou, C.; Alcocer, M. J. P.; Leijtens, T.; Herz, L. M.; Petrozza, A.; Snaith, H. J. Electron–hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 2013, 342, 341–344.

    CAS  PubMed  ADS  Google Scholar 

  2. Dong, Q. F.; Fang, Y. J.; Shao, Y. C.; Mulligan, P.; Qiu, J.; Cao, L.; Huang, J. S. Electron–hole diffusion lengths > 175 µm in solution-grown CH3NH3PbI3 single crystals. Science 2015, 347, 967–970.

    CAS  PubMed  ADS  Google Scholar 

  3. D’Innocenzo, V.; Grancini, G.; Alcocer, M. J. P.; Kandada, A. R. M.; Stranks, S. D.; Lee, M. M.; Lanzani, G.; Snaith, H. J.; Petrozza, A. Excitons versus free charges in organo-lead tri-halide perovskites. Nat. Commun. 2014, 5, 3586.

    PubMed  ADS  Google Scholar 

  4. Miyata, A.; Mitioglu, A.; Plochocka, P.; Portugall, O.; Wang, J. T. W.; Stranks, S. D.; Snaith, H. J.; Nicholas, R. J. Direct measurement of the exciton binding energy and effective masses for charge carriers in organic–inorganic tri-halide perovskites. Nat. Phys. 2015, 11, 582–587.

    CAS  Google Scholar 

  5. Park, N. G.; Grätzel, M.; Miyasaka, T.; Zhu, K.; Emery, K. Towards stable and commercially available perovskite solar cells. Nat. Energy 2016, 1, 16152.

    CAS  ADS  Google Scholar 

  6. Lee, M. M.; Teuscher, J.; Miyasaka, T.; Murakami, T. N.; Snaith, H. J. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 2012, 338, 643–647.

    CAS  PubMed  ADS  Google Scholar 

  7. Jena, A. K.; Kulkarni, A.; Miyasaka, T. Halide perovskite photovoltaics: Background, status, and future prospects. Chem. Rev. 2019, 119, 3036–3103.

    CAS  PubMed  Google Scholar 

  8. Jung, H. S.; Han, G. S.; Park, N. G.; Ko, M. J. Flexible perovskite solar cells. Joule 2019, 3, 1850–1880.

    CAS  Google Scholar 

  9. NREL best research-cell efficiency chart [Online]. https://www.nrel.gov/pv/assets/pdfs/cell-pv-eff-emergingpv.pdf (accessed July 18, 2023).

  10. Gao, Y. J.; Huang, K. Q.; Long, C. Y.; Ding, Y.; Chang, J. H.; Zhang, D.; Etgar, L.; Liu, M. Z.; Zhang, J.; Yang, J. L. Flexible perovskite solar cells: From materials and device architectures to applications. ACS Energy Lett. 2022, 7, 1412–1445.

    CAS  Google Scholar 

  11. Zha, W. S.; Zhang, L. P.; Wen, L.; Kang, J. C.; Luo, Q.; Chen, Q.; Yang, S. F.; Ma, C. Q. Controllable formation of PbI2 and PbI2(DMSO) nano domains in perovskite films through precursor solvent engineering. Acta. Phys.-Chim. Sin. 2022, 38, 2003022.

    Google Scholar 

  12. Kim, J. H.; Seok, H. J.; Seo, H. J.; Seong, T. Y.; Heo, J. H.; Lim, S. H.; Ahn, K. J.; Kim, H. K. Flexible ITO films with atomically flat surfaces for high performance flexible perovskite solar cells. Nanoscale 2018, 10, 20587–20598.

    CAS  PubMed  Google Scholar 

  13. Reddy, S. H.; Di Giacomo, F.; Di Carlo, A. Low-temperature-processed stable perovskite solar cells and modules: A comprehensive review. Adv. Energy Mater. 2022, 12, 2103534.

    CAS  Google Scholar 

  14. Wang, Y. C.; Li, X. D.; Zhu, L. P.; Liu, X. H.; Zhang, W. J.; Fang, J. F. Efficient and hysteresis-free perovskite solar cells based on a solution processable polar fullerene electron transport layer. Adv. Energy Mater. 2017, 7, 1701144.

    Google Scholar 

  15. Roldán-Carmona, C.; Malinkiewicz, O.; Soriano, A.; Mínguez Espallargas, G.; Garcia, A.; Reinecke, P.; Kroyer, T.; Dar, M. I.; Nazeeruddin, M. K.; Bolink, H. J. Flexible high efficiency perovskite solar cells. Energy Environ. Sci. 2014, 7, 994–997.

    Google Scholar 

  16. Yang, Z. F.; Chen, W.; Mei, A. H.; Li, Q. T.; Liu, Y. L. Flexible MAPbI3 perovskite solar cells with the high efficiency of 16.11% by low-temperature synthesis of compact anatase TiO2 film. J. Alloys Compd. 2021, 854, 155488.

    CAS  Google Scholar 

  17. Qiu, W. M.; Paetzold, U. W.; Gehlhaar, R.; Smirnov, V.; Boyen, H. G.; Tait, J. G.; Conings, B.; Zhang, W. M.; Nielsen, C. B.; McCulloch, I. et al. An electron beam evaporated TiO2 layer for high efficiency planar perovskite solar cells on flexible polyethylene terephthalate substrates. J. Mater. Chem. A. 2015, 3, 22824–22829.

    CAS  Google Scholar 

  18. Wang, C. L.; Guan, L.; Zhao, D. W.; Yu, Y.; Grice, C. R.; Song, Z. N.; Awni, R. A.; Chen, J.; Wang, J. B.; Zhao, X. Z. et al. Water vapor treatment of low-temperature deposited SnO2 electron selective layers for efficient flexible perovskite solar cells. ACS Energy Lett. 2017, 2, 2118–2124.

    CAS  Google Scholar 

  19. Bouhjar, F.; Derbali, L.; Marí, B. High performance novel flexible perovskite solar cell based on a low-cost-processed ZnO:Co electron transport layer. Nano Res. 2020, 13, 2546–2555.

    Google Scholar 

  20. Liu, X.; Chueh, C. C.; Zhu, Z. L.; Jo, S. B.; Sun, Y.; Jen, A. K. Y. Highly crystalline Zn2SnO4 nanoparticles as efficient electron-transporting layers toward stable inverted and flexible conventional perovskite solar cells. J. Mater. Chem. A. 2016, 3, 15294–15301.

    Google Scholar 

  21. Wang, K.; Shi, Y. T.; Gao, L. G.; Chi, R. H.; Shi, K.; Guo, B. Y.; Zhao, L.; Ma, T. L. W(Nb)Ox-based efficient flexible perovskite solar cells: From material optimization to working principle. Nano Energy 2017, 31, 424–431.

    CAS  Google Scholar 

  22. Heo, J. H.; Lee, M. H.; Han, H. J.; Patil, B. R.; Yu, J. S.; Im, S. H. Highly efficient low temperature solution processable planar type CH3NH3PbI3 perovskite flexible solar cells. J. Mater. Chem. A 2016, 3, 1572–1578.

    Google Scholar 

  23. Liu, G. L.; Zhong, Y.; Mao, H. D.; Yang, J.; Dai, R. Y.; Hu, X. T.; Xing, Z.; Sheng, W. P.; Tan, L. C.; Chen, Y. W. Highly efficient and stable ZnO-based MA-free perovskite solar cells via overcoming interfacial mismatch and deprotonation reaction. Chem. Eng. J. 2022, 431, 134235.

    CAS  Google Scholar 

  24. Feng, J. S.; Yang, Z.; Yang, D.; Ren, X. D.; Zhu, X. J.; Jin, Z. W.; Zi, W.; Wei, Q. B.; Liu, S. Z. E-beam evaporated Nb2O5 as an effective electron transport layer for large flexible perovskite solar cells. Nano Energy 2017, 36, 1–8.

    ADS  Google Scholar 

  25. Shin, S. S.; Yang, W. S.; Noh, J. H.; Suk, J. H.; Jeon, N. J.; Park, J. H.; Kim, J. S.; Seong, W. M.; Seok, S. I. High-performance flexible perovskite solar cells exploiting Zn2SnO4 prepared in solution below 100 °C. Nat. Commun. 2015, 6, 7410.

    CAS  PubMed  ADS  Google Scholar 

  26. Paik, M. J.; Yoo, J. W.; Park, J.; Noh, E.; Kim, H.; Ji, S. G.; Kim, Y. Y.; Il Seok, S. SnO2−TiO2 hybrid electron transport layer for efficient and flexible perovskite solar cells. ACS Energy Lett. 2022, 7, 1864–1870.

    CAS  Google Scholar 

  27. Park, S. Y.; Zhu, K. Advances in SnO2 for efficient and stable n-i-p perovskite solar cells. Adv. Mater. 2022, 34, 2110438.

    CAS  Google Scholar 

  28. Chen, Z. Y.; Cheng, Q. R.; Chen, H. Y.; Wu, Y. Y.; Ding, J. Y.; Wu, X. X.; Yang, H. Y.; Liu, H.; Chen, W. J.; Tang, X. H. et al. Perovskite grain-boundary manipulation using room-temperature dynamic self-healing “ligaments” for developing highly stable flexible perovskite solar cells with 23.8% efficiency. Adv. Mater. 2023, 35, 2300513.

    CAS  Google Scholar 

  29. Bu, T. L.; Shi, S. W.; Li, J.; Liu, Y. F.; Shi, J. L.; Chen, L.; Liu, X. P.; Qiu, J. H.; Ku, Z. L.; Peng, Y. et al. Low-temperature presynthesized crystalline tin oxide for efficient flexible perovskite solar cells and modules. ACS Appl. Mater. Interfaces 2018, 10, 14922–14929.

    CAS  PubMed  Google Scholar 

  30. Bu, T. L.; Li, J.; Zheng, F.; Chen, W. J.; Wen, X. M.; Ku, Z. L.; Peng, Y.; Zhong, J.; Cheng, Y. B.; Huang, F. Z. Universal passivation strategy to slot-die printed SnO2 for hysteresis-free efficient flexible perovskite solar module. Nat. Commun. 2018, 9, 4609.

    PubMed  PubMed Central  ADS  Google Scholar 

  31. Zandi, O.; Agrawal, A.; Shearer, A. B.; Reimnitz, L. C.; Dahlman, C. J.; Staller, C. M.; Milliron, D. J. Impacts of surface depletion on the plasmonic properties of doped semiconductor nanocrystals. Nat. Mater. 2018, 17, 710–717.

    CAS  PubMed  ADS  Google Scholar 

  32. Kar, A.; Yang, J. Y.; Dutta, M.; Stroscio, M. A.; Kumari, J.; Meyyappan, M. Rapid thermal annealing effects on tin oxide nanowires prepared by vapor–liquid–solid technique. Nanotechnology 2009, 20, 065704.

    PubMed  ADS  Google Scholar 

  33. Li, Z. H.; Wang, Z. H.; Jia, C. M.; Wan, Z.; Zhi, C. Y.; Li, C.; Zhang, M. H.; Zhang, C.; Li, Z. Annealing free tin oxide electron transport layers for flexible perovskite solar cells. Nano Energy 2022, 94, 106919.

    CAS  Google Scholar 

  34. Roose, B.; Friend, R. H. Extrinsic electron concentration in SnO2 electron extracting contact in lead halide perovskite solar cells. Adv. Mater. Interfaces 2019, 6, 1801788.

    Google Scholar 

  35. De Souza, A. E.; Monteiro, S. H.; Santilli, C. V.; Pulcinelli, S. H. Electrical and optical characteristics of SnO2 thin films prepared by dip coating from aqueous colloidal suspensions. J. Mater. Sci. Mater. Electron. 1997, 8, 265–270.

    CAS  Google Scholar 

  36. Kim, S.; Yun, Y. J.; Kim, T.; Lee, C.; Ko, Y.; Jun, Y. Hydrolysis-regulated chemical bath deposition of tin-oxide-based electron transport layers for efficient perovskite solar cells with a reduced potential loss. Chem. Mater. 2021, 33, 8194–8204.

    CAS  Google Scholar 

  37. Hiratsuka, R. S.; Santilli, C. V.; Silva, D. V.; Pulcinelli, S. H. Effect of electrolyte on the gelation and aggregation of SnO2 colloidal suspensions. J. Non-Cryst. Solids 1992, 147–148, 67–73.

    ADS  Google Scholar 

  38. Xu, Z. H.; Ng, C. H.; Zhou, X. M.; Li, X. H.; Zhang, P. T.; Teo, S. H. Polymer-complexed SnO2 electron transport layer for high-efficiency n-i-p perovskite solar cells. Nanoscale 2022, 14, 12090–12098.

    CAS  PubMed  Google Scholar 

  39. Xi, J. H.; Yuan, J. F.; Du, J. Y.; Yan, X. Q.; Tian, J. J. Efficient perovskite solar cells based on tin oxide nanocrystals with difunctional modification. Small 2022, 18, 2203519.

    CAS  Google Scholar 

  40. Yoo, J. J.; Seo, G.; Chua, M. R.; Park, T. G.; Lu, Y. L.; Rotermund, F.; Kim, Y. K.; Moon, C. S.; Jeon, N. J.; Correa-Baena, J. P. et al. Efficient perovskite solar cells via improved carrier management. Nature 2021, 590, 587–593.

    CAS  PubMed  ADS  Google Scholar 

  41. Zhu, X. Y.; Dong, H.; Chen, J. B.; Xu, J.; Li, Z. J.; Yuan, F.; Dai, J. F.; Jiao, B.; Hou, X.; Xi, J. et al. Photoinduced cross linkable polymerization of flexible perovskite solar cells and modules by incorporating benzyl acrylate. Adv. Funct. Mater. 2022, 32, 2202408.

    CAS  Google Scholar 

  42. Bu, T. L.; Li, J.; Li, H. Y.; Tian, C. C.; Su, J.; Tong, G. Q.; Ono, L. K.; Wang, C.; Lin, Z. P.; Chai, N. A. Y. et al. Lead halide-templated crystallization of methylamine-free perovskite for efficient photovoltaic modules. Science 2021, 372, 1327–1332.

    CAS  PubMed  ADS  Google Scholar 

  43. Ma, C. Q.; Kang, M. C.; Lee, S. H.; Kwon, S. J.; Cha, H. W.; Yang, C. W.; Park, N. G. Photovoltaically top-performing perovskite crystal facets. Joule 2022, 6, 2626–2643.

    CAS  Google Scholar 

  44. Wu, M. Z.; Duan, Y. W.; Yang, L.; You, P.; Li, Z. J.; Wang, J. G.; Zhou, H.; Yang, S. M.; Xu, D. F.; Zou, H. et al. Multifunctional small molecule as buried interface passivator for efficient planar perovskite solar cells. Adv. Funct. Mater. 2023, 33, 2300128.

    CAS  Google Scholar 

  45. Liu, C.; Huang, K. X.; Hu, B. H.; Li, Y. R.; Zhang, L. Z.; Zhou, X. Y.; Liu, Y. L.; Liu, Z. X.; Sheng, Y. F.; Chen, S. et al. Concurrent top and buried surface optimization for flexible perovskite solar cells with high efficiency and stability. Adv. Funct. Mater. 2023, 33, 2212698.

    CAS  Google Scholar 

  46. Jiang, Q.; Zhao, Y.; Zhang, X. W.; Yang, X. L.; Chen, Y.; Chu, Z. M.; Ye, Q. F.; Li, X. X.; Yin, Z. G.; You, J. B. Surface passivation of perovskite film for efficient solar cells. Nat. Photonics 2019, 13, 460–466.

    CAS  ADS  Google Scholar 

  47. Mo, Y. P.; Wang, C.; Zheng, X. T.; Zhou, P.; Li, J.; Yu, X. X.; Yang, K. Z.; Deng, X. Y.; Park, H.; Huang, F. Z. et al. Nitrogen-doped tin oxide electron transport layer for stable perovskite solar cells with efficiency over 23%. Interdiscip. Mater. 2022, 1, 309–315.

    Google Scholar 

  48. Wu, S. F.; Li, Z.; Zhang, J.; Liu, T. T.; Zhu, Z. L.; Jen, A. K. Y. Efficient large guanidinium mixed perovskite solar cells with enhanced photovoltage and low energy losses. Chem. Commun. 2019, 55, 4315–4318.

    CAS  Google Scholar 

  49. Wang, L. P.; Xia, J. X.; Yan, Z.; Song, P. Q.; Zhen, C.; Jiang, X.; Shao, G.; Qiu, Z. L.; Wei, Z. H.; Qiu, J. H. et al. Robust interfacial modifier for efficient perovskite solar cells: Reconstruction of energy alignment at buried interface by self-diffusion of dopants. Adv. Funct. Mater. 2022, 32, 2204725.

    CAS  Google Scholar 

  50. Suo, J. J.; Yang, B. W.; Mosconi, E.; Choi, H. S.; Kim, Y.; Zakeeruddin, S. M.; De Angelis, F.; Grätzel, M.; Kim, H. S.; Hagfeldt, A. Surface reconstruction engineering with synergistic effect of mixed-salt passivation treatment toward efficient and stable perovskite solar cells. Adv. Funct. Mater. 2021, 31, 2102902.

    CAS  Google Scholar 

  51. Dong, Q. S.; Chen, M.; Liu, Y. H.; Eickemeyer, F. T.; Zhao, W. D.; Dai, Z. H.; Yin, Y. F.; Jiang, C.; Feng, J. S.; Jin, S. Y. et al. Flexible perovskite solar cells with simultaneously improved efficiency, operational stability, and mechanical reliability. Joule 2021, 5, 1587–1601.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key Research and Development Plan (No. 2019YFE0107200), the National Natural Science Foundation of China (Nos. 22279099, 52202292, and 52172230), Guangdong Basic and Applied Basic Research Fund (No. 2021B1515120003), the NSF of Hubei Province (No. 2021CFB051), the Fundamental Research Funds for the Central Universities (No. WUT: 2023IVA074), and the National Research Foundation of Korea (NRF) (No. 2019K1A3A1A61091345).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mengjun Zhou, Hyesung Park or Tongle Bu.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, Z., Li, J., Jiang, R. et al. Efficient flexible perovskite solar cells and modules using a stable SnO2-nanocrystal isopropanol dispersion. Nano Res. 17, 2704–2711 (2024). https://doi.org/10.1007/s12274-023-6115-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-6115-y

Keywords