Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Single point incremental forming of AA6061 thin sheet: calibration of ductile fracture models incorporating anisotropy and post forming analyses

  • Original Research
  • Published:
International Journal of Material Forming Aims and scope Submit manuscript

Abstract

Nowadays, single point incremental forming (SPIF) process is gaining popularity for fabrication of various asymmetrical intricate sheet metal components in automobile, aerospace, ship-building, additive manufacturing and also in biomedical sectors. In the present work, a SPIF set up was designed and developed in-house to perform forming experiments using AA6061 thin sheet material. The fracture forming limit diagram (FFLD) was assessed experimentally using punch stretching test, and it was validated with the optimized SPIF test data. Further, an effort was made to modify the existing seven damage models implementing Hill48 anisotropy plasticity theory. Consequently, the effective plastic strains at the onset of fracture were predicted and compared with experimental data. All the critical damage parameters of investigated ductile fracture models were successfully calibrated using uniaxial tensile test data, and the theoretical FFLD was also estimated incorporating the anisotropy plasticity theory. Among the seven damage models, the Bao-Wierzbicki (BW) damage model was found to be the most efficient damage model with an average absolute error of 2.71%. Additionally, the influence of sheet metal anisotropy on the effective fracture strain was studied by comparing the fracture strain in 2D (η, LP) and 3D (\( \eta, {L}_P,{\overline{\varepsilon}}_f \)) fracture locus. In order to get insight into forming behaviour and surface roughness, the microstructural examination on the truncated dome fabricated using optimised parameters was carried out through micro texture analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Voswinckel H, Bambach M, Hirt G (2015) Improving geometrical accuracy for flanging by incremental sheet metal forming. Int J Mater Form 8(3):391–399. https://doi.org/10.1007/s12289-014-1182-y

    Article  Google Scholar 

  2. Jeswiet J, Micari F, Hirt G, Bramley A, Duflou J, Allwood J (2005) Asymmetric single point incremental forming of sheet metal. CIRP Ann Manuf Technol 54(2):88–114

  3. Duflou JR, Verbert J, Belkassem B, Gu J, Sol H, Henrard C, Habraken AM (2008) Process window enhancement for single point incremental forming through multi-step toolpaths. CIRP Ann Technol 57(1):253–256

    Article  Google Scholar 

  4. Lu B, Ou H, Shi SQ, Long H, Chen J (2016) Titanium based cranial reconstruction using incremental sheet forming. Int J Mater Form 9(3):361–370. https://doi.org/10.1007/s12289-014-1205-8

    Article  Google Scholar 

  5. Bahloul R, Arfa H, Belhadjsalah H (2014) A study on optimal design of process parameters in single point incremental forming of sheet metal by combining box-Behnken design of experiments, response surface methods and genetic algorithms. Int J Adv Manuf Technol 74(1-4):163–185. https://doi.org/10.1007/s00170-014-5975-4

    Article  Google Scholar 

  6. Isik K, Silva MB, Tekkaya AE, Martins PAF (2014) Formability limits by fracture in sheet metal forming. J Mater Process Technol 214(8):1557–1565. https://doi.org/10.1016/j.jmatprotec.2014.02.026

    Article  Google Scholar 

  7. Martins PAF, Bay N, Tekkaya AE, Atkins AG (2014) Characterization of fracture loci in metal forming. Int J Mech Sci 83:112–123. https://doi.org/10.1016/j.ijmecsci.2014.04.003

    Article  Google Scholar 

  8. Habibi N, Zarei-hanzaki A, Abedi H (2015) Journal of materials processing technology an investigation into the fracture mechanisms of twinning-induced-plasticity steel sheets under various strain paths. J Mater Process Technol 224:102–116. https://doi.org/10.1016/j.jmatprotec.2015.04.014

    Article  Google Scholar 

  9. Abedini A, Butcher C, Worswick MJ (2017) Fracture characterization of rolled sheet alloys in shear loading: studies of specimen geometry, anisotropy, and rate sensitivity. Exp Mech 57(1):75–88. https://doi.org/10.1007/s11340-016-0211-9

    Article  Google Scholar 

  10. Bai Y, Wierzbicki T (2015) A comparative study of three groups of ductile fracture loci in the 3D space. Eng Fract Mech 135:147–167. https://doi.org/10.1016/j.engfracmech.2014.12.023

    Article  Google Scholar 

  11. Park N, Huh H, Lim SJ, Lou Y, Kang YS, Seo MH (2017) Fracture-based forming limit criteria for anisotropic materials in sheet metal forming. Int J Plast 96:1–35. https://doi.org/10.1016/j.ijplas.2016.04.014

    Article  Google Scholar 

  12. McAnulty T, Jeswiet J, Doolan M (2017) Formability in single point incremental forming: a comparative analysis of the state of the art. CIRP J Manuf Sci Technol 16:43–54. https://doi.org/10.1016/j.cirpj.2016.07.003

    Article  Google Scholar 

  13. Fiorentino A, Marzi R, Ceretti E (2012) Preliminary results on Ti incremental sheet forming (ISF) of biomedical devices: biocompatibility, surface finishing and treatment. International Journal of Mechatronics and Manufacturing Systems 5(1):36–45. https://doi.org/10.1504/IJMMS.2012.046146

  14. Feng JW, Zhan LH, Yang YG (2016) The establishment of surface roughness as failure criterion of Al–Li alloy stretch-forming process. Metals 6(1):13. https://doi.org/10.3390/met6010013

  15. Hill R (1948) A theory of the yielding and plastic flow of anisotropic metals. Proc R Soc Lond A 193(1033):281–297. https://doi.org/10.1098/rspa.1948.0045

    Article  MathSciNet  MATH  Google Scholar 

  16. Basak S, Panda SK (2016) Application of Barlat Yld-96 Yield Criterion for Predicting Formability of Pre-Strained Dual Phase Steel Sheets. In: ASME 2016 11th International Manufacturing Science and Engineering Conference. p V001T02A063--V001T02A063

  17. Basak S, Panda SK, Zhou YN (2015) Formability assessment of Prestrained automotive grade steel sheets using stress based and polar effective plastic strain-forming limit diagram. J Eng Mater Technol 137(4):041006. https://doi.org/10.1115/1.4030786

    Article  Google Scholar 

  18. Bai Y, Wierzbicki T (2008) A new model of metal plasticity and fracture with pressure and lode dependence. Int J Plast 24(6):1071–1096. https://doi.org/10.1016/j.ijplas.2007.09.004

    Article  MATH  Google Scholar 

  19. Bao Y, Wierzbicki T (2004) On fracture locus in the equivalent strain and stress triaxiality space. Int J Mech Sci 46(1):81–98. https://doi.org/10.1016/j.ijmecsci.2004.02.006

    Article  Google Scholar 

  20. Lee YW (2005) Fracture prediction in metal sheets (PhD thesis). Massachusetts Institute Of Technology, Cambridge, United States

  21. Considere A (1885) Use of the iron and steel in buildings. Ann Des Ponts Chaussees 9:574–575

    Google Scholar 

  22. Gorji M, Berisha B, Hora P, Barlat F (2015) Modeling of localization and fracture phenomena in strain and stress space for sheet metal forming. Int J Mater Form. https://doi.org/10.1007/s12289-015-1242-y

  23. Silva MB, Nielsen PS, Bay N, Martins PAF (2011) Failure mechanisms in single-point incremental forming of metals. Int J Adv Manuf Technol 56(9-12):893–903. https://doi.org/10.1007/s00170-011-3254-1

    Article  Google Scholar 

  24. Freudenthal AM (1950) The inelastic behavior of solids. Wiley, New York

    Google Scholar 

  25. Clift SE, Hartley P, Sturgess CEN, Rowe GW (1990) Fracture prediction in plastic deformation processes. Int J Mech Sci 32(1):1–17. https://doi.org/10.1016/0020-7403(90)90148-C

    Article  Google Scholar 

  26. Cockcroft MG, Latham DJ (1968) Ductility and the workability of metals. J Inst Met 96:33–39

    Google Scholar 

  27. Tarigopula V, Hopperstad OS, Langseth M, Clausen AH, Hild F, Lademo OG, Eriksson M (2008) A study of large plastic deformations in dual phase steel using digital image correlation and FE analysis. Exp Mech 48(2):181–196. https://doi.org/10.1007/s11340-007-9066-4

    Article  Google Scholar 

  28. Oh SI, Chen CC, Kobayashi S (1979) Ductile fracture in axisymmetric extrusion and drawing-part 2: workability in extrusion and drawing. Journal of Engineering for Industry 101(1):36–44. https://doi.org/10.1115/1.3439471

  29. Brozzo P, Deluca B, Rendina R (1972) A new method for the prediction of formability in metal sheets, sheet material forming and formability. In: Proceedings of the Seventh Biennial Conference of the IDDRG

  30. Rice JR, Tracey DM (1969) On the ductile enlargement of voids in triaxial stress fields∗. J Mech Phys Solids 17(3):201–217. https://doi.org/10.1016/0022-5096(69)90033-7

    Article  Google Scholar 

  31. Nakazima K, Kikuma T, Hasuka K (1968) Study on the formability of steel sheets. Yawata Tech Rep 264:8517–8530

  32. Basak S, Panda SK (2018) Implementation of Yld96 anisotropy plasticity theory for estimation of polar effective plastic strain based failure limit of pre-strained thin steels. Thin-Walled Struct 126:26–37

    Article  Google Scholar 

  33. Dhara S, Basak S, Panda SK, Hazra S, Shollock B, Dashwood R (2016) Formability analysis of pre-strained AA5754-O sheet metal using Yld96 plasticity theory: role of amount and direction of uni-axial pre-strain. J Manuf Process 24:270–282. https://doi.org/10.1016/j.jmapro.2016.09.014

    Article  Google Scholar 

  34. Prasad KS, Panda SK, Kar SK et al (2017) Microstructures, forming limit and failure analyses of Inconel 718 sheets for fabrication of aerospace components. J Mater Eng Perform 26(4):1513–1530

    Article  Google Scholar 

  35. Panicker SS, Prasad KS, Basak S, Panda SK (2017) Constitutive behavior and deep Drawability of three aluminum alloys under different temperatures and deformation speeds. J Mater Eng Perform 26(8):3954–3969

    Article  Google Scholar 

  36. Prasad KS, Gupta AK, Singh Y, Singh SK (2016) A modified mechanical threshold stress constitutive model for austenitic stainless steels. J Mater Eng Perform. https://doi.org/10.1007/s11665-016-2389-5

  37. Gatea S, Ou H, McCartney G (2016) Review on the influence of process parameters in incremental sheet forming. Int J Adv Manuf Technol 87(1-4):479–499. https://doi.org/10.1007/s00170-016-8426-6

    Article  Google Scholar 

  38. Emmens WC, Sebastiani G, van den Boogaard AH (2010) The technology of incremental sheet forming-a brief review of the history. J Mater Process Technol 210(8):981–997. https://doi.org/10.1016/j.jmatprotec.2010.02.014

    Article  Google Scholar 

  39. Behera AK, de Sousa RA, Ingarao G, Oleksik V (2017) Single point incremental forming: an assessment of the progress and technology trends from 2005 to 2015. J Manuf Process 27:37–62

    Article  Google Scholar 

  40. Silva MB, Skjoedt M, Atkins a G et al (2008) Single-point incremental forming and formability–failure diagrams. J Strain Anal Eng Des 43(1):15–35. https://doi.org/10.1243/03093247JSA340

    Article  Google Scholar 

  41. Madeira T, Silva CMA, Silva MB, Martins PAF (2015) Failure in single point incremental forming. Int J Adv Manuf Technol 80(9-12):1471–1479. https://doi.org/10.1007/s00170-014-6381-7

    Article  Google Scholar 

  42. Hagan E, Jeswiet J (2004) Analysis of surface roughness for parts formed by computer numerical controlled incremental forming. Proc Inst Mech Eng B J Eng Manuf 218(10):1307–1312

    Article  Google Scholar 

  43. Hamilton K, Jeswiet J (2010) Single point incremental forming at high feed rates and rotational speeds: surface and structural consequences. CIRP Ann Manuf Technol 59(1):311–314. https://doi.org/10.1016/j.cirp.2010.03.016

    Article  Google Scholar 

  44. Durante M, Formisano A, Langella A (2010) Comparison between analytical and experimental roughness values of components created by incremental forming. J Mater Process Technol 210(14):1934–1941

    Article  Google Scholar 

  45. Bennett JM (1992) Recent developments in surface roughness characterization. Meas Sci Technol 3(12):1119

    Article  Google Scholar 

  46. Prasad KS, Panda SK, Kar SK, Murty SVSN, Sharma SC (2018) Effect of solution treatment on deep drawability of IN718 sheets: experimental analysis and metallurgical characterization. Mater Sci Eng A 727:97–112. https://doi.org/10.1016/j.msea.2018.04.110

    Article  Google Scholar 

  47. Masoumi M, Santos LPM, Bastos IN, Tavares SSM, da Silva MJG, de Abreu HFG (2016) Texture and grain boundary study in high strength Fe-18Ni-co steel related to hydrogen embrittlement. Mater Des 91:90–97. https://doi.org/10.1016/j.matdes.2015.11.093

    Article  Google Scholar 

  48. Goel S, Jayaganthan R, Singh IV, Srivastava D, Dey GK, Saibaba N (2015) Texture evolution and ultrafine grain formation in cross-cryo-rolled zircaloy-2. Acta Metallurgica Sinica (English Letters) 28(7):837–846. https://doi.org/10.1007/s40195-015-0267-z

  49. Weibel ER (1989) Measuring through the microscope: development and evolution of stereological methods. J Microsc 155(3):393–403

    Article  Google Scholar 

  50. Osakada K, Oyane M (1971) On the roughening of free surface in deformation processes. Bulletin of JSME 14(68):171–177

    Article  Google Scholar 

  51. Dai K, Villegas J, Shaw L (2005) An analytical model of the surface roughness of an aluminum alloy treated with a surface nanocrystallization and hardening process. Scr Mater 52(4):259–263. https://doi.org/10.1016/j.scriptamat.2004.10.021

    Article  Google Scholar 

  52. Savoie J, Zhou Y, Jonas JJ, Macewen SR (1996) Textures induced by tension and deep drawing in aluminum sheets. Acta Mater 44(2):587–605. https://doi.org/10.1016/1359-6454(95)00214-6

    Article  Google Scholar 

  53. Rossiter J, Brahme A, Inal K, Mishra R (2013) Numerical analyses of surface roughness during bending of FCC single crystals and polycrystals. Int J Plast 46:82–93. https://doi.org/10.1016/j.ijplas.2013.01.016

    Article  Google Scholar 

Download references

Acknowledgements

Authors are thankful to Mr. A. Mehto, Mr. J. Bagchi and Mr. Y. Shiva Ganesh of Department of Mechanical Engineering, IIT Kharagpur for their help while conducting single point incremental forming experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sushanta Kumar Panda.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Basak, S., Prasad, K.S., Sidpara, A.M. et al. Single point incremental forming of AA6061 thin sheet: calibration of ductile fracture models incorporating anisotropy and post forming analyses. Int J Mater Form 12, 623–642 (2019). https://doi.org/10.1007/s12289-018-1439-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12289-018-1439-y

Keywords