Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A generic column generation principle: derivation and convergence analysis

  • Original Paper
  • Published:
Operational Research Aims and scope Submit manuscript

Abstract

Given a non-empty, compact and convex set, and an a priori defined condition which each element either satisfies or not, we want to find an element belonging to the former category. This is a fundamental problem of mathematical programming which encompasses nonlinear programs, variational inequalities, and saddle-point problems. We present a conceptual column generation scheme, which alternates between solving a restriction of the original problem and a column generation phase which is used to augment the restricted problems. We establish the general applicability of the conceptual method, as well as to the three problem classes mentioned. We also establish a version of the conceptual method in which the restricted and column generation problems are allowed to be solved approximately, and of a version allowing for the dropping of columns. We show that some solution methods (e.g., Dantzig–Wolfe decomposition and simplicial decomposition) are special instances, and present new convergent column generation methods in nonlinear programming, such as a sequential linear programming type method. Along the way, we also relate our quite general scheme in nonlinear programming presented in this paper with several other classic, and more recent, iterative methods in nonlinear optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The requirement that f be convex is only made for reasons of simplicity of the presentation.

  2. As  Higgins and Polak (1990) have pointed out, von Hohenbalken’s version of the algorithm is guaranteed convergent for polyhedral feasible sets only.

References

  • Appelgren LH (1969) A column generation algorithm for a ship scheduling problem. Transp Sci 3:53–68

    Article  Google Scholar 

  • Appelgren LH (1971) Integer programming methods for a vessel scheduling problem. Transp Sci 5:64–78

    Article  Google Scholar 

  • Aubin J-P, Frankowska H (1990) Set-valued analysis. Birkhäuser, Boston

    Google Scholar 

  • Auslender A (1976) Optimisation: Méthodes Numériques. Masson, Paris

    Google Scholar 

  • Bar-Gera H (2002) Origin-based algorithm for the traffic assignment problem. Transp Sci 36:398–417

    Article  Google Scholar 

  • Bar-Gera H (2010) Traffic assignment by paired alternative segments. Transp Sci 44:1022–1046

    Google Scholar 

  • Bazaraa MS, Sherali HD, Shetty CM (2006) Nonlinear programming: theory and algorithms, 3rd edn. Wiley, New York

    Book  Google Scholar 

  • Bertsekas DP (1999) Nonlinear programming. Athena Scientific, Belmont

    Google Scholar 

  • Bertsekas DP, Yu H (2011) A unifying polyhedral approximation framework for convex optimization. SIAM J Optim 21:333–360

    Article  Google Scholar 

  • Boyce D, Ralevic-Dekic B, Bar-Gera H (2004) Convergence of traffic assignments: How much is enough? J Transp Eng 130:49–55

    Article  Google Scholar 

  • Burke JV, Moré JJ (1988) On the identification of active constraints. SIAM J Numer Anal 25:1197–1211

    Article  Google Scholar 

  • Burke JV, Moré JJ (1994) Exposing constraints. SIAM J Optim 3:573–595

    Article  Google Scholar 

  • Canon MD, Cullum CD (1968) A tight upper bound on the rate of convergence of the Frank–Wolfe algorithm. SIAM J Control 6:509–516

    Article  Google Scholar 

  • Çelebi E, Fuller JD (2013) Master problem approximations in Dantzig–Wolfe decomposition of variational inequality problems with applications to two energy market models. Comput Oper Res 40:2724–2739

    Article  Google Scholar 

  • Cohen G (1980) Auxiliary problem principle and decomposition of optimization problems. J Optim Theory Appl 32:277–305

    Article  Google Scholar 

  • Conn AR, Gould NIM, Toint PhL (2000) Trust-region methods., Vol. 1 of MPS-SIAM series on optimization, SIAM, Philadelphia

    Book  Google Scholar 

  • Danskin JM (1967) The theory of max–min. Springer, Berlin

    Google Scholar 

  • Dantzig GB, Wolfe P (1960) Decomposition principle for linear programs. Oper Res 8:101–111

    Article  Google Scholar 

  • Dantzig GB, Wolfe P (1961) The decomposition algorithm for linear programs. Econometrica 29:767–778

    Article  Google Scholar 

  • Dem’yanov VF, Malozemov VN (1974) Introduction to minimax. Wiley, New York

    Google Scholar 

  • Dirickx YMI, Jennergren LP (1979) Systems analysis by multilevel methods. Wiley, Chichester

    Google Scholar 

  • Feinberg B (1989) Coercion functions and decentralized linear programming. Math Oper Res 177–187

  • Feng G, Cui Z (2003) Combination of trust region method and simplicial decomposition for convex constrained nonlinear optimization. Optimization 52:459–466

    Article  Google Scholar 

  • Feng G, Li M (2001) Quadratic approximation in the restricted simplicial decomposition. OR Trans 6:43–49

    Google Scholar 

  • Fletcher R, Gould NIM, Leyffer S, Toint PL, Wächter A (2002) Global convergence of a trust-region SQP-filter algorithm for general nonlinear programming. SIAM J Optim 13:635–659

    Article  Google Scholar 

  • Fletcher R, Leyffer S (2002) Nonlinear programming without a penalty function. Math Program 91:239–269

    Article  Google Scholar 

  • Ford LR Jr, Fulkerson DR (1958) A suggested computation for maximal multi-commodity network flows. Manag Sci 5:97–101

    Article  Google Scholar 

  • Frank M, Wolfe P (1956) An algorithm for quadratic programming. Nav Res Logist Q 3:95–110

    Article  Google Scholar 

  • Fuller JD, Chung W (2008) Benders decomposition for a class of variational inequalities. Eur J Oper Res 185:76–91

    Article  Google Scholar 

  • García R, Marín A, Patriksson M (2003) Column generation algorithms for nonlinear optimization, I: convergence analysis. Optimization 52:171–200

    Article  Google Scholar 

  • García R, Marín A, Patriksson M (2011) Column generation algorithms for nonlinear optimization, II: numerical investigations. Comput Oper Res 38:591–604

    Article  Google Scholar 

  • Geoffrion AM (1970) Elements of large scale mathematical programming. Manag Sci 16:652–691

    Article  Google Scholar 

  • Gilmore P, Gomory R (1961) A linear programming approach to the cutting stock problem. Oper Res 9:849–859

    Article  Google Scholar 

  • Gilmore P, Gomory R (1963) A linear programming approach to the cutting stock problem—part ii. Oper Res 11:863–888

    Article  Google Scholar 

  • Goldstein AA (1964) Convex programming in Hilbert space. Bull Am Math Soc 70:709–710

    Article  Google Scholar 

  • Harker PT, Pang J-S (1990) Finite-dimensional variational inequality and nonlinear complementarity problems: a survey of theory, algorithms and applications. Math Program 48:161–220

    Article  Google Scholar 

  • Hearn DW, Lawphongpanich S, Nguyen S (1984) Convex programming formulations of the asymmetric traffic assignment problem. Transp Res B Methodol 18:357–365

    Article  Google Scholar 

  • Hearn DW, Lawphongpanich S, Ventura JA (1985) Finiteness in restricted simplicial decomposition. Oper Res Lett 4:125–130

    Article  Google Scholar 

  • Hearn DW, Lawphongpanich S, Ventura JA (1987) Restricted simplicial decomposition: computation and extensions. Math Program Study 31:99–118

    Google Scholar 

  • Higgins JE, Polak E (1990) Minimizing pseudoconvex functions on convex compact sets. J Optim Theory Appl 65:1–27

    Article  Google Scholar 

  • Holloway CA (1974) An extension of the Frank and Wolfe method of feasible directions. Math Program 6:14–27

    Article  Google Scholar 

  • Jones KL, Lustig IJ, Farvolden JM, Powell WB (1993) Multicommodity network flows: the impact of formulation on decomposition. Math Program 62:95–117

    Article  Google Scholar 

  • Karakitsiou A, Mavrommati A, Migdalas A (2004) Efficient minimization over products of simplices and its application to nonlinear multicommodity network flows. Oper Res 4:99–118

    Google Scholar 

  • Kim K, Nazareth JL (1991) The decomposition principle and algorithms for linear programming. Linear Algebra Appl 152:119–133

  • Larsson T, Patriksson M (1992) Simplicial decomposition with disaggregated representation for the traffic assignment problem. Transp Sci 26:4–17

    Article  Google Scholar 

  • Larsson T, Patriksson M (1994) A class of gap functions for variational inequalities. Math Program 64:53–79

    Article  Google Scholar 

  • Larsson T, Patriksson M (1995) An augmented Lagrangian dual algorithm for link capacity side constrained traffic assignment problems. Transp Res B Methodol 29:433–455

    Article  Google Scholar 

  • Larsson T, Patriksson M (1999) Side constrained traffic equilibrium models—analysis, computation and applications. Transp Res B Methodol 33:233–264

    Article  Google Scholar 

  • Larsson T, Patriksson M, Rydergren C (1996) Applications of simplicial decomposition with nonlinear column generation to nonlinear network flows. In: Pardalos PM, Hearn DW, Hager WW (eds) Network optimization. Proceedings of the network optimization conference. Lecture notes in economics and mathematical systems, University of Florida, Gainesville, vol 450. Springer, Berlin, pp 346–373

  • Larsson T, Patriksson M, Rydergren C (2004) A column generation procedure for the side constrained traffic equilibrium problem. Transp Res B Methodol 38:17–38

    Article  Google Scholar 

  • Larsson T, Patriksson M, Strömberg A-B (1998) Ergodic convergence in subgradient optimization. Optim Methods Softw 9:93–120

    Article  Google Scholar 

  • Larsson T, Patriksson M, Strömberg A-B (2012) Ergodic convergence in subgradient optimization—with application to simplicial decomposition of convex programs. Contemp Math 568:159–189

    Google Scholar 

  • Lasdon LS (1970) Optimization theory for large systems. Macmillan, New York

    Google Scholar 

  • Lawphongpanich S (2000) Simplicial with truncated Dantzig–Wolfe decomposition for nonlinear network flow problems with side constraints. Oper Res Lett 26:33–41

    Article  Google Scholar 

  • Lawphongpanich S, Hearn D (1984) Simplicial decomposition of the asymmetric traffic assignment problem. Transp Res B Methodol 18:123–133

    Article  Google Scholar 

  • Levitin ES, Polyak BT (1966) Constrained minimization methods. USSR Comput Math Math Phys 6:1–50

    Article  Google Scholar 

  • Lübbecke ME, Desrosiers J (2005) Selected topics in column generation. Oper Res 53:1007–1023

    Article  Google Scholar 

  • Luenberger DG (1984) Linear and nonlinear programming, 2nd edn. Addison-Wesley, Reading

    Google Scholar 

  • Luo Z-Q, Pang J-S, Ralph D (1996) Mathematical programs with equilibrium constraints. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Manne AS (1958) Programming of economic lot sizes. Manag Sci 4:115–135

    Article  Google Scholar 

  • Marcotte P, Dussault J-P (1989) A sequential linear programming algorithm for solving monotone variational inequalities. SIAM J Control Optim 27:1260–1278

  • Marín A (1995) Restricted simplicial decomposition with side constraints. Networks 26:199–215

    Article  Google Scholar 

  • Migdalas A (1994) A regularization of the Frank–Wolfe method and unification of certain nonlinear programming methods. Math Program 65:331–345

    Article  Google Scholar 

  • Mijangos E (2005) An efficient method for nonlinearly constrained networks. Eur J Oper Res 161:618–635

    Article  Google Scholar 

  • Mosco U (1969) Convergence of convex sets and of solutions of variational inequalities. Adv Math 3:510–585

    Article  Google Scholar 

  • Mulvey JM, Zenios SA, Ahlfeld DP (1990) Simplicial decomposition for convex generalized networks. J Inf Optim Sci 11:359–387

    Google Scholar 

  • Murphy FH (1973a) Column dropping procedures for the generalized programming algorithm. Manag Sci 19:1310–1321

    Article  Google Scholar 

  • Murphy FH (1973b) A column generation algorithm for nonlinear programming. Math Program 5:286–298

    Article  Google Scholar 

  • Nie Y (2009) A class of bush-based algorithms for the traffic assignment problem. Transp Res B Methodol 44:73–89

    Article  Google Scholar 

  • Nie Y, Zhang HM, Lee D-H (2004) Models and algorithms for the traffic assignment problem with link capacity constraints. Transp Res B Methodol 38:285–312

    Article  Google Scholar 

  • Nikaido H (1968) Convex structures and economic theory. Academic Press, New York

    Google Scholar 

  • O’Neill RP, Widhelm WB (1976) Acceleration of Lagrangian column-generation algorithms by penalty function methods. Manag Sci 23:50–58

    Article  Google Scholar 

  • Patriksson M (1994) The traffic assignment problem—Models and methods, VSP BV, Utrecht, The Netherlands. Facsimile republication 2015 by Dover Publications, Mineola, NY

    Google Scholar 

  • Patriksson M (1998a) Cost approximation: a unified framework of descent algorithms for nonlinear programs. SIAM J Optim 8:561–582

    Article  Google Scholar 

  • Patriksson M (1998b) Cost approximation algorithms with nonmonotone line searches for nonlinear programs. Optimization 44:199–217

    Article  Google Scholar 

  • Patriksson M (1998c) Decomposition methods for differentiable optimization problems on Cartesian product sets. Comput Optim Appl 9:5–42

    Article  Google Scholar 

  • Patriksson M (1998d) Nonlinear programming and variational inequality problems—a unified approach., Vol. 23 of applied optimization. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Pshenichny BN, Danilin YM (1978) Numerical methods in extremal problems. MIR Publishers, Moscow

    Google Scholar 

  • Pshenichnyi BN, Sosnovsky AA (1993) The linearization method: principal concepts and perspective directions. J Glob Optim 3:483–500

    Article  Google Scholar 

  • Rockafellar RT (1970) Convex analysis. Princeton University Press, Princeton

    Google Scholar 

  • Rockafellar RT (1976) Monotone operators and the proximal point algorithm. SIAM J Control Optim 14:877–898

    Article  Google Scholar 

  • Rockafellar RT, Wets RJ-B (1997) Variational analysis. Springer, Berlin

    Google Scholar 

  • Rudin W (1976) Principles of mathematical analysis, 3rd edn. McGraw-Hill, Auckland

    Google Scholar 

  • Ruszczyński A (1989) An augmented Lagrangian decomposition method for block diagonal linear programming problems. Oper Res Lett 8:287–294

    Article  Google Scholar 

  • Salinetti G, Wets RJ-B (1979) On the convergence of sequences of convex sets in finite dimensions. SIAM Rev 21:18–33

    Article  Google Scholar 

  • Shahpar AH, Aashtiani HZ, Babazadeh A (2008) Dynamic penalty function method for the side constrained traffic assignment problem. Appl Math Comput 206:332–345

    Article  Google Scholar 

  • Stefek D (1989) Extensions of simplicial decomposition for solving the multicommodity flow problem with bounded arc flows and convex costs. PhD thesis, University of Pennsylvania, Philadelphia, PN, USA

  • Strömberg A-B (1997) Conditional subgradient methods and ergodic convergence in nonsmooth optimization. PhD thesis, Department of Mathematics, Linköping Institute of Technology, Linköping, Sweden

  • Ventura JA, Hearn DW (1993) Restricted simplicial decomposition for convex constrained problems. Math Program 59:71–85

    Article  Google Scholar 

  • von Hohenbalken B (1975) A finite algorithm to maximize certain pseudo-concave functions on polytopes. Math Program 9:189–206

    Article  Google Scholar 

  • von Hohenbalken B (1977) Simplicial decomposition in nonlinear programming algorithms. Math Program 13:49–68

    Article  Google Scholar 

  • Wolfe P (1970) Convergence theory in nonlinear programming. In: Abadie J (ed) Integer and nonlinear programming. Prentice-Hall, Englewood Cliffs, pp 1–36

    Google Scholar 

  • Zangwill WI (1969) Nonlinear programming: a unified approach. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  • Zenios SA, Pınar MÇ, Dembo RS (1995) A smooth penalty function algorithm for network-structured problems. Eur J Oper Res 83:220–236

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Athanasios Migdalas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Larsson, T., Migdalas, A. & Patriksson, M. A generic column generation principle: derivation and convergence analysis. Oper Res Int J 15, 163–198 (2015). https://doi.org/10.1007/s12351-015-0171-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12351-015-0171-3

Keywords

Mathematics Subject Classification