Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Probabilistic Autonomous Robot Navigation in Dynamic Environments with Human Motion Prediction

  • Published:
International Journal of Social Robotics Aims and scope Submit manuscript

Abstract

This paper considers the problem of autonomous robot navigation in dynamic and congested environments. The predictive navigation paradigm is proposed where probabilistic planning is integrated with obstacle avoidance along with future motion prediction of humans and/or other obstacles. Predictive navigation is performed in a global manner with the use of a hierarchical Partially Observable Markov Decision Process (POMDP) that can be solved on-line at each time step and provides the actual actions the robot performs. Obstacle avoidance is performed within the predictive navigation model with a novel approach by deciding paths to the goal position that are not obstructed by other moving objects movement with the use of future motion prediction and by enabling the robot to increase or decrease its speed of movement or by performing detours. The robot is able to decide which obstacle avoidance behavior is optimal in each case within the unified navigation model employed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bennewitz M, Burgard W, Cielniak G, Thrun S (2005) Learning motion patterns of people for compliant robot motion. Int J Robot Res 24(1)

  2. Borenstein J, Koren Y (1991) The Vector Field Histogram—fast obstacle avoidance for mobile robots. IEEE Trans Robot Autom 7(3):278–288

    Article  Google Scholar 

  3. Brock O, Khatib O (1999) High-speed navigation using the global dynamic window approach. In: Proceedings of the IEEE international conference on robotics & automation (ICRA)

  4. Bruce A, Gordon G (2004) Better motion prediction for people-tracking. In: Proceedings of the IEEE international conference on robotics & automation (ICRA)

  5. Chang CC, Song KT (1996) Dynamic motion planning based on real-time obstacle prediction. In: Proceedings of the IEEE international conference on robotics & automation (ICRA), vol 3, pp 2402–2407

  6. Elganar A, Gupta K (1998) Motion prediction of moving objects based on autoregressive model. IEEE Trans Syst Man Cybern Part A 28(6):803–810

    Article  Google Scholar 

  7. Foka A, Trahanias P (2002) Predictive autonomous robot navigation. In: Proceedings of the IEEE/RSJ international conference on intelligent robots & systems (IROS)

  8. Foka A, Trahanias P (2003) Predictive control of robot velocity to avoid obstacles in dynamic environments. In: Proceedings of the IEEE/RSJ international conference on intelligent robots & systems (IROS)

  9. Foka AF, Trahanias PE (2007) Real-time hierarchical POMDPS for autonomous robot navigation. Robot Auton Syst 55(7):561–571

    Article  Google Scholar 

  10. Fox D, Burgard W, Thrun S (1997) The dynamic window approach to collision avoidance. IEEE Robot Autom Mag 4(1):23–33

    Article  Google Scholar 

  11. Hauskrecht M (2000) Value function approximations for Partially Observable Markov Decision Processes. J Artif Intell Res 13:33–95

    MATH  MathSciNet  Google Scholar 

  12. Kehtarnavaz N, Li S (1988) A collision-free navigation scheme in the presence of moving obstacles. In: CVPR’88 (IEEE computer society conference on computer vision and pattern recognition, Ann Arbor, MI, 5–9 June 1988). Computer Society Press, Washington, pp 808–813

    Chapter  Google Scholar 

  13. Khatib O (1986) Real-time obstacle avoidance for robot manipulator and mobile robots. Int J Robot Res 5(1):90–98

    Article  MathSciNet  Google Scholar 

  14. Littman ML, Goldsmith J, Mundhenk M (1998) The computational complexity of probabilistic planning. J Artif Intell Res 9:1–36

    MATH  MathSciNet  Google Scholar 

  15. Lu F, Milios E (1998) Robot pose estimation in unknown environments by matching 2d range scans. J Intell Robot Syst 18:249–275

    Article  Google Scholar 

  16. Müller J, Stachniss C, Arras K, Burgard W (2009) Socially inspired motion planning for mobile robots in populated environments. In: International Conference on Cognitive Systems (CogSys), Karlsruhe, Germany, 2008

  17. Nam YS, Lee BH, Kim MS (1996) View-time based moving obstacle avoidance using stochastic prediction of obstacle motion. In: Proceedings of the 1996 IEEE international conference on robotics and automation, pp 1081–1086

  18. Ogren P, Leonard N (2005) A convergent dynamic window approach to obstacle avoidance. IEEE Trans Robot 21(2):188–195

    Article  Google Scholar 

  19. Oliver S, Saptharishi M, Dolan J, Trebi-Ollennu A, Khosla P (2000) Multi-robot path planning by predicting structure in a dynamic environment. In: Proceedings of the first IFAC conference on mechatronic systems, vol II, pp 593–598

  20. Ortega JG, Camacho EF (1996) Mobile robot navigation in a partially structured static environment, using neural predictive control. Control Eng Pract 4(12):1669–1679

    Article  Google Scholar 

  21. Petti S, Fraichard T (2005) Safe motion planning in dynamic environments. In: Proceedings of the IEEE/RSJ international conference on intelligent robots & systems (IROS), pp 2210– 2215

  22. Rohrmuller F, Althoff M, Wollherr D, Buss M (2008) Probabilistic mapping of dynamic obstacles using Markov chains for replanning in dynamic environments. In: IROS, pp 2504–2510

  23. Stachniss C, Burgard W (2002) An integrated approach to goal-directed obstacle avoidance under dynamic constraints for dynamic environments. In: Proceedings of the IEEE/RSJ international conference on intelligent robots & systems (IROS)

  24. Tadokoro S, Ishikawa Y, Takebe T, Takamori T (1993) Stochastic prediction of human motion and control of robots in the service of human. In: Proceedings of the 1993 IEEE international conference on systems, man and cybernetics, vol 1, pp 503–508

  25. Tadokoro S, Hayashi M, Manabe Y (1995) On motion planning of mobile robots which coexist and cooperate with human. In: Proceedings of the 1995 IEEE/RSJ international conference on intelligent robots and systems, pp 518–523

  26. Vasquez D, Fraichard T (2004) Motion prediction for moving objects: a statistical approach. In: Proceedings of the IEEE international conference on robotics & automation (ICRA)

  27. Yung NHC, Ye C (1998) Avoidance of moving obstacles through behavior fusion and motion prediction. In: IEEE international conference on systems, man and cybernetics, pp 3424–3429

  28. Zhu Q (1991) Hidden Markov Model for dynamic obstacle avoidance of mobile robot navigation. IEEE Trans Robot Autom 7(3):390–397

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amalia F. Foka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Foka, A.F., Trahanias, P.E. Probabilistic Autonomous Robot Navigation in Dynamic Environments with Human Motion Prediction. Int J of Soc Robotics 2, 79–94 (2010). https://doi.org/10.1007/s12369-009-0037-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12369-009-0037-z