Abstract
Line planning is an early step in the planning process in public transportation, usually followed by designing the timetable. The problems related to both steps are known to be NP-hard, and an integrated model finding a line plan and a timetable simultaneously seems out of scope from a computational point of view. However, the line plan influences also the quality of the timetable to be computed in the next planning step.
In this paper we analyze the impact of different line planning models by comparing not only typical characteristics of the line plans, but also their impact on timetables and their robustness against delays. To this end, we set up a simulation platform LinTim which enables us to compute a timetable for each line concept and to experimentally evaluate its performance under delays. Using the German railway intercity network, we evaluate the quality of different line plans from a line planning, a timetabling, and a delay management perspective.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Notes
References
Borndörfer R, Grötschel M, Pfetsch ME (2007) A column generation approach to line planning in public transport. Transp Sci 41:123–132
Borndörfer R, Grötschel M, Pfetsch ME (2008) Models for line planning in public transport. In: Computer-aided scheduling of public transport (CASPT). Lecture notes in economics and mathematical systems, vol 600, pp 363–378
Barber F, Ingolotti L, Lova A, Marin A, Mesa J, Ortega F, Perea F, Tormos P (2008) Integrating timetabling, network and line design. Technical report, ARRIVAL project
Bussieck MR, Kreuzer P, Zimmermann UT (1996) Optimal lines for railway systems. Eur J Oper Res 96(1):54–63
Bussieck MR, Lindner T, Lübbecke ME (2004) A fast algorithm for near cost optimal line plans. Math Methods Oper Res 59(2):205–220
Bouma A, Oltrogge C (1994) Linienplanung und Simulation für öffentliche Verkehrswege in Praxis und Theorie. ETR Eisenbahntech Rundsch 43:369–378
Bussieck MR (1998) Optimal lines in public transport. PhD thesis, Technische Universität Braunschweig
Carey M (1994) A model and strategy for train pathing with choice of lines, platforms and routes. Transp Res B 28(5):333–353
Cacchiani V, Toth P (2012) Nominal and robust train timetabling problems. Eur J Oper Res 219(3):727–737
Cacchiani V, Caprara A, Galli L, Kroon L, Maroti G, Toth P (2012) Railway rolling stock planning: Robustness against large disruptions. Transp Sci 46(2):217–232
Claessens MT, van Dijk NM, Zwaneveld PJ (1998) Cost optimal allocation of rail passenger lines. Eur J Oper Res 110:474–489
Ceder A, Wilson NHM (1986) Bus network design. Transp Res B 20(4):331–344
D’Angelo G, Di Stefano G, Navarra A (2009a) Recoverable-robust timetables for trains on single-line corridors. In: Proceedings of the 3rd international seminar on railway operations modelling and analysis—engineering and optimisation approaches (RailZurich2009)
D’Angelo G, Di Stefano G, Navarra A, Pinotti CM (2009b) Recoverable robust timetables on trees. In: Combinatorial optimization and applications. Lecture note in computer science, vol 5573. Springer, Berlin, pp 451–462
Desaulniers G, Hickman M (2007) Public transit. In: Transportation. Handbooks in operations research and management science, vol 14. Elsevier, Amsterdam, pp 69–127
Dienst H (1978) Linienplanung im spurgeführten Personenverkehr mit Hilfe eines heuristischen Verfahrens. PhD thesis, Technische Universität Braunschweig (in German)
Fischetti M, Monaci M (2009) Light robustness. In: Robust and online large-scale optimization. Lecture note on computer science, vol 5868. Springer, Berlin, pp 61–84
Fischetti M, Salvagnin D, Zanette A (2009) Fast approaches to improve the robustness of a railway timetable. Transp Sci 43:321–335
Goossens J (2004) Models and algorithms for railway line planning problems. PhD thesis, University of Maastricht
Goerigk M, Schöbel A (2010) An empirical analysis of robustness concepts for timetabling. In: Proceedings of ATMOS10. OpenAccess series in informatics (OASIcs), vol 14. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, pp 100–113
Goerigk M, Schöbel A (2013) Improving the modulo simplex algorithm for large-scale periodic timetabling. Comput Oper Res 40(5):1363–1370
Israeli Y, Ceder A (1995) Transit route design using scheduling and multiobjective programming techniques. In: Computer-aided scheduling of public transport (CASPT). Lecture notes in economics and mathematical systems, vol 430. Springer, Berlin, pp 56–75
Kroon LG, Dekker R, Vromans M (2007) Cyclic railway timetabling: A stochastic optimization approach. In: Algorithmic methods for railway optimization. Lecture notes in computer science, vol 4359. Springer, Berlin, pp 41–66
Liebchen C (2008) Linien-, Fahrplan-, Umlauf- und Dienstplanoptimierung: Wie weit können diese bereits integriert werden? In: Heureka’08—Optimierung in Transport und Verkehr, Tagungsbericht. FGSV Verlag, Köln
Lindner T (2000) Train schedule optimization in public rail transport. PhD thesis, Technische Universität Braunschweig
Liebchen C, Möhring R (2007) The modeling power of the periodic event scheduling problem: railway timetables—and beyond. In: Algorithmic methods for railway optimization. Lecture notes on computer science, vol 4359. Springer, Berlin, pp 3–40
Liebchen C, Proksch M, Wagner FH (2005) Performance of algorithms for periodic timetable optimization. In: Computer-aided scheduling of public transport (CASPT). Lecture notes in economics and mathematical systems. Springer, Berlin
Liebchen C, Schachtebeck M, Schöbel A, Stiller S, Prigge A (2010) Computing delay-resistant railway timetables. Comput Oper Res 37:857–868
Michaelis M, Schöbel A (2009) Integrating line planning, timetabling, and vehicle scheduling: A customer-oriented approach. Public Transp 1(3):211–232
Nachtigall K (1998) Periodic Network Optimization and Fixed Interval Timetables. Deutsches Zentrum für Luft– und Raumfahrt. Institut für Flugführung, Braunschweig. Habilitationsschrift
Nachtigall K, Jerosch K (2008) Simultaneous network line planning and traffic assignment. In: ATMOS 2008—8th workshop on algorithmic approaches for transportation modeling, optimization, and systems, Dagstuhl, Germany. http://drops.dagstuhl.de/opus/volltexte/2008/1589
Nachtigall K, Opitz J (2008) Solving periodic timetable optimisation problems by modulo simplex calculations. In: Proc ATMOS
Nguyen S, Pallottino S (1988) Equilibrium traffic assignment for large scale transit networks. Eur J Oper Res 37(2):176–186
Schwarze S (2008) Path player games: analysis and applications. Springer, Berlin
Schachtebeck M (2010) Delay management in public transportation: capacities, robustness, and integration. PhD thesis, Universität Göttingen
Schöbel A (2012) Line planning in public transportation: models and methods. OR Spektrum 34:491–510
Schöbel A, Scholl S (2006) Line planning with minimal travel time. In: 5th workshop on algorithmic methods and models for optimization of railways. Dagstuhl seminar proceedings, vol 06901
Schöbel A, Schwarze S (2006) A game-theoretic approach to line planning. In: 6th workshop on algorithmic methods and models for optimization of railways. Dagstuhl seminar proceedings, vol 06002
Schachtebeck M, Schöbel A (2010) To wait or not to wait and who goes first? Delay management with priority decisions. Transp Sci 44(3):307–321
Serafini P, Ukovich W (1989) A mathematical model for periodic scheduling problems. SIAM J Discrete Math 2:550–581
Zwaneveld PJ, Claessens MT, van Dijk NM (1996) A new method to determine the cost optimal allocation of passenger lines. In: Defence or attack: proceedings of 2nd TRAIL Phd congress 1996, Part 2. TRAIL Research School, Delft/Rotterdam
Author information
Authors and Affiliations
Corresponding author
Additional information
Partially supported by grant SCHO 1140/3-2 within the DFG programme Algorithm Engineering.
Rights and permissions
About this article
Cite this article
Goerigk, M., Schachtebeck, M. & Schöbel, A. Evaluating line concepts using travel times and robustness. Public Transp 5, 267–284 (2013). https://doi.org/10.1007/s12469-013-0072-x
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12469-013-0072-x