Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

An efficient evolutionary algorithm for fuzzy inference systems

  • Original Paper
  • Published:
Evolving Systems Aims and scope Submit manuscript

Abstract

In this paper, a novel self-constructing evolutionary algorithm (SCEA) for designing a TSK-type fuzzy model (TFM) is proposed. The proposed SCEA method is different from normal genetic algorithms (GAs). A chromosome of a population in traditional GAs represents a full solution and only one population presents all solutions in each generation. Our proposed method uses a population to evaluate a partial solution locally and applies several populations to construct a full solution. Thus, a chromosome represents only a partial solution. The proposed SCEA method uses the self-constructing learning algorithm to construct the TFM automatically that is based on the input training data to decide on the input partition. Fuzzy rules are created and begin to grow as the first training pattern arrives. Thus, the user need not give any a priori knowledge or even any initial information on the SCEA. We also adopted the sequence search-based dynamic evolution (SSDE) method to carry out parameter learning of the TFM. Simulation results have shown that the proposed SCEA method performs better than some existing methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Ang KK, Quek C, Pasquier M (2003) POPFNN-CRI(S): pseudo outer product based fuzzy neural network using the compositional rule of inference and singleton fuzzifier. IEEE Trans Syst Man Cybern B 33(6):838–849

    Article  Google Scholar 

  • Arabas J, Michalewicz Z, Mulawka J (1994) GAVaPS-a genetic algorithm with varying population size. In: Proceedings of the First IEEE Conference on Evolutionary Computation, Orlando, pp 73–78

    Google Scholar 

  • Bäck T, Schwefel HP (1993) An overview of evolutionary algorithms for parameter optimization. Evol Comput 1(1):1–23

    Article  Google Scholar 

  • Collins RJ, Jefferson DR (1991) Selection in massively parallel genetic algorithms. In: Proceedings of the Fourth International Conference on Genetic Algorithms, pp 249–256

    Google Scholar 

  • Cordon O, Herrera F, Hoffmann F, Magdalena L (2001) Genetic fuzzy systems evolutionary tuning and learning of fuzzy knowledge bases. Advances in fuzzy systems-applications and theory. World Scientific Publishing, NJ

    Google Scholar 

  • Eshelman LJ, Schaffer JD (1993) Real-coded genetic algorithms and interval-schemata. Foundation of Genetic Algorithms 2:187–202

    Google Scholar 

  • Fogel LJ (1994) Evolutionary programming in perspective: the top-down view. Computational intelligence: imitating life. In: Zurada JM, Marks II RJ, Goldberg C (eds) IEEE Press, Piscataway

  • Fogel DB (1995) Evolutionary computation: toward a new philosophy of machine intelligence. IEEE Press, Piscataway

    Google Scholar 

  • Garcia-Pedrajas N, Hervas-Martinez H, Ortiz-Boyer D (2005) Cooperative coevolution of artificial neural network ensembles for pattern classification. IEEE Trans Evol Comput 9(3):271–302

    Article  Google Scholar 

  • Goldberg DE (1989) Genetic algorithms in search optimization and machine learning. Addison-Wesley, MA

    MATH  Google Scholar 

  • Hansen N, Ostermeier A (2001) Completely derandomized self-adaptation in evolution strategies. Evol Comput 9(2):159–195

    Article  Google Scholar 

  • He J, Liu L, Palm G (1995) Speaker identification using hybrid LVQ-SLP networks. In: Proceedings of IEEE International Conference on Neural Networks, pp 2052–2055

    Google Scholar 

  • Homaifar A, McCormick E (1995) Simultaneous design of membership functions and rule sets for fuzzy controllers using genetic algorithms. IEEE Trans Fuzzy Syst 3(9):129–139

    Article  Google Scholar 

  • Hung MC, Yang DL (2001) The efficient fuzzy c-means clustering technique. In: Proceedings of IEEE International Conference on Data Mining, pp 225–232

    Google Scholar 

  • Jang JSR (1993) ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans Syst Man Cybern 23(3):665–685

    Article  MathSciNet  Google Scholar 

  • Jang JSR, Sun CT, Mizutani E (1997) Neuro-fuzzy and soft computing. Prentice-Hall

  • Juang CF (2002) A TSK-type recurrent fuzzy network for dynamic systems processing by neural network and genetic algorithms. IEEE Trans Fuzzy Systs 10(2):155–170

    Article  MathSciNet  Google Scholar 

  • Juang CF (2004) A hybrid of genetic algorithm and particle swarm optimization for recurrent network design. IEEE Trans Syst Man Cybern B 34(2):997–1006

    Article  Google Scholar 

  • Juang CF (2005) Combination of on-line clustering and Q-value based GA for reinforcement fuzzy system design. IEEE Trans Fuzzy Systems 13(3):289–302

    Article  Google Scholar 

  • Juang CF, Hsu CH (2005) Temperature control by chip-implemented adaptive recurrent fuzzy controller designed by evolutionary algorithm. IEEE Trans Circuits Syst I Regul Pap 25(11):2376–2384

    Article  Google Scholar 

  • Juang CF, Lin JY, Lin CT (2000) Genetic reinforcement learning through symbiotic evolution for fuzzy controller design. IEEE Trans Syst Man Cybern B 30(2):290–302

    Article  MathSciNet  Google Scholar 

  • Karr CL (1991) Design of an adaptive fuzzy logic controller using a genetic algorithm. In: Proceedings of the 4th International Conference Genetic Algorithms, pp 450–457

  • Koza JK (1992) Genetic programming: on the programming of computers by means of natural selection. MIT Press, Cambridge

    MATH  Google Scholar 

  • Krawiec K, Bhanu B (2007) Visual learning by evolutionary and coevolutionary feature synthesis. IEEE Trans Evol Comput 11(5):635–650

    Article  Google Scholar 

  • Kumar P, Chandna VK, Thomas MS (2004) Fuzzy-genetic algorithm for pre-processing data at the RTU. IEEE Trans Power Systems 19(2):718–723

    Article  Google Scholar 

  • Lee MA, Takagi H (1993) Integrating design stages of fuzzy systems using genetic algorithms. In: Proceedings of 2nd IEEE International Conference on Fuzzy Systems, New York, pp 612–617

  • Lin CJ, Chin CC (2004) Prediction and identification using wavelet-based recurrent fuzzy neural networks. IEEE Trans Syst Man Cybern B 34(5):2144–2154

    Article  Google Scholar 

  • Lin CT, Jou CP (2000) GA-based fuzzy reinforcement learning for control of a magnetic bearing system. IEEE Trans Syst Man Cybern B 30(2):276–289

    Google Scholar 

  • Lin CT, Lee CSG (1996) Neural fuzzy systems: a neuro-fuzzy synergism to intelligent system. Prentice-Hall, NJ

  • Lin CJ, Lin CT (1997) An ART-based fuzzy adaptive learning control network. IEEE Trans Fuzzy Systs 5(4):477–496

    Article  Google Scholar 

  • Lin CJ, Xu YJ (2006) A novel evolution learning for recurrent wavelet-based neuro-fuzzy networks. Soft Comput 10(3):193–205

    Article  Google Scholar 

  • Lin FJ, Lin CH, Shen PH (2001) Self-constructing fuzzy neural network speed controller for permanent-magnet synchronous motor drive. IEEE Trans Fuzzy Systs 9(5):751–759

    Article  Google Scholar 

  • Lin CJ, Chen CH, Lin CT (2008) Efficient self-evolving evolutionary learning for neurofuzzy inference systems. IEEE Trans Fuzzy Systems 16(6):1476–1490

    Article  Google Scholar 

  • Ling SH, Leung HF, Lam HK, Lee YS, Tam KS (2003) A novel genetic-algorithm-based neural network for short-term load forecasting. IEEE Trans Industrial Electronic 50(4):793–799

    Article  Google Scholar 

  • Mamdani EM (1974) Application of fuzzy algorithms for control of simple dynamic plant. In: IEEE Proceedings, pp 1585–1588

  • Michalewicz Z (1999) Genetic Algorithms + Data Structures = Evolution Programs. Springer, New York

    Google Scholar 

  • Moriarty DE, Miikkulainen R (1996) Efficient reinforcement learning through symbiotic evolution. Mach Learn 22(1–3):11–32

    Google Scholar 

  • Rechenberg I (1994) Evolution strategy. Computational intelligence: imitating life. In: Zurada JM, Marks II RJ, Goldberg C (eds) IEEE Press, Piscataway

  • Storn R, Price KV (1997) Differential evolution––a simple and efficient heuristic for global optimization over continuous spaces. J Global Opt 11(4):341–359

    Article  MathSciNet  MATH  Google Scholar 

  • Takagi T, Sugeno M (1985) Fuzzy identification of systems and its applications to modeling and control. IEEE Trans Syst Man Cybern 15(1):116–132

    MATH  Google Scholar 

  • Takagi H, Suzuki N, Koda T, Kojima Y (1992) Neural networks designed on approximate reasoning architecture and their application. IEEE Trans Neural Networks 3(5):752–759

    Article  Google Scholar 

  • Tanese R (1989) Distributed genetic algorithm. In: Proceedings of international conference genetic algorithms, pp 434–439

  • Tanomaru J, Omatu S (1992) Process control by self-constructing trained neural controllers. IEEE Trans Ind Electron 39:511–521

    Article  Google Scholar 

  • Towell GG, Shavlik JW (1993) Extracting refined rules from knowledge-based neural networks. Mach Learn 13(1):71–101

    Google Scholar 

  • Wang WY, Li YH (2003) Evolutionary learning of BMF fuzzy-neural networks using a reduced-form genetic algorithm. IEEE Trans Syst Man Cybern B 33(6):966–976

    Article  Google Scholar 

  • Wang LX, Mendel JM (1992) Generating fuzzy rules by learning from examples. IEEE Trans Syst Man Cybern 22(6):1414–1427

    Article  MathSciNet  Google Scholar 

  • Yao X (1999) Evolutionary computation: theory and applications. World Scientific, Singapore

    Google Scholar 

Download references

Acknowledgments

This research is supported by the National Science Council of R.O.C. under grant NSC 99-2221-E-167-022.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng-Jian Lin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, CJ., Chen, CH. & Lin, CT. An efficient evolutionary algorithm for fuzzy inference systems. Evolving Systems 2, 83–99 (2011). https://doi.org/10.1007/s12530-010-9024-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12530-010-9024-8

Keywords