Abstract
The fossil record indicates that complex multicellular organisms started to become dominant in the second half of the Neoproterozoic. However, many macroscopic fossils of this period are not yet well understood. As one example, the Jinxian Biota includes some affinity-unresolved, millimeter- to centimeter-sized discoid fossils of probable pre-Ediacaran age from the shales of the Xingmincun Formation, in southern Liaodong Peninsula, China. This paper presents new observations of these fossils based on new material. Three types of preservation were identified and analyzed. The organisms were probably transported by turbidity currents, rapidly buried in fine-grained deposits and then compacted to yield thin films. Pyrite- and carbonate-related mineralization may have been involved in their early diagenesis, but local-controlled late diagenesis altered the fossil-related mineral composition to that observed today. The concentric annular relief on the fossil surfaces exhibits a “half convex, half concave” pattern, which is interpreted to reflect the differentiated mechanical nature between adjacent annuli. New specimens have been found that support the existence of programmed fission and budding. In addition, another group of previously ignored discoid fossils are first described here. With the same preservation as the “normal” discs, these fossils lack any concentric relief and always occur in clusters. The relationship between the two types of discs remains unclear. Even with all of the new information, it remains impossible to indubitably correlate the Jinxian Biota to any known taxonomic group. However, it is quite probable that these fossils represent a group of eukaryotic organisms.
Kurzfassung
Der fossile Bericht zeigt, dass größere komplexe Organismen erst in der zweiten Hälfte des Neoproterozoikums (Cryogenium) erscheinen. Allerdings sind diese Fossilien nur schwer interpretierbar und es ist nicht möglich sie heutigen Metazoen zu zuordnen. Ein Beispiel dafür sind die bis einige Zentimeter großen scheibenförmigen Fossilien aus der Xingmincun Formation (südliche Liaodong Halbinsel, Nordchina). In der vorliegenden Arbeit werden neue Beobachtungen zur Paläobiologie dieser Fossilien beschrieben basierend auf drei unterschiedlichen Erhaltungsstadien. Die Organismen wurden sehr wahrscheinlich in Suspensionswolken von feinkörnigen Mikroturbiditen transportiert und durch diesen Prozess rasch im Sediment eingebettet. Durch diesen Vorgang wurden sie zu dünnen Scheiben kompaktiert. Es lassen sich drei unterschiedliche Erhaltungstypen, bedingt durch unterschiedliche diagenetische Bedingungen, unterscheiden. Die drei verschiedenen Diagenestypen unterscheiden sich in den assoziierten Mineralien und in der Dicke der Scheiben. Die Scheiben zeigen konzentrische, reliefartige Muster mit halb konvexen und halb konkaven Kompaktionsstrukturen. Neben diesen spezifischen Oberflächenstrukturen finden sich Teilungs- und Knospungsmuster. Es wird eine weitere Form dieser Scheiben-Fossilien beschrieben, die keine konzentrischen Strukturen aufweisen und stets zusammen mit vielen Individuen auftreten (Schwarm). Die vorgestellten Fossilien zeigen gute Übereinstimmungen mit den “Beltanelliformis” Fossilien der unterkambrischen Pusa Formation in Spanien. Eine engere taxonomische Zuordnung zu einem bekannten Taxon konnte bis dato nicht vorgenommen werden.
Similar content being viewed by others
References
Adl, S.M., A.G.B. Simpson, M.A. Farmer, R.A. Andersen, O.R. Anderson, J.R. Barta, S.S. Bowser, et al. 2005. The new higher level classification of eukaryotes with emphasis on the taxonomy of protists. Journal of Eukaryotic Microbiology 52(5): 399–451.
Allison, P.A. 1988. Konservat-Lagerstatten: Cause and classification. Paleobiology 14(4): 331–344.
Bailey, J.V., S.B. Joye, K.M. Kalanetra, B.E. Flood, and F.A. Corsetti. 2007. Evidence of giant sulphur bacteria in Neoproterozoic phosphorites. Nature 445: 198–201.
Bengtson, S., B. Rasmussen, and B. Krapež. 2007. The Paleoproterozoic megascopic Stirling biota. Paleobiology 33(3): 351–381.
Brasier, M.D., A. Perejón, and D.S. José. 1979. Discovery of an important fossiliferous Precambrian-Cambrian sequence in Spain. Estudios Geológicos 35: 379–383.
Butterfield, N.J. 2009. Modes of pre-Ediacaran multicellularity. Precambrian Research 173: 201–211.
Butterfield, N.J. 1995. Secular distribution of Burgess-Shale-type preservation. Lethaia 28(1): 1–13.
Butterfield, N.J., U. Balthasar, and L.A. Wilson. 2007. Fossil diagenesis in the Burgess Shale. Palaeontology 50(3): 537–543.
Cao, R., T. Tang, and Y. Xue. 1988. The connection of the Upper Precambrian in N. China with the Sinian system in S. China. Geological Review 34(2): 173–178.
Cruse, T., and L.B. Harris. 1994. Ediacaran fossils from the Stirling Range Formation, Western Australia. Precambrian Research 67: 1–10.
Duan, J., and S. An. 1994. On the subdivision and correlation of Upper Precambrian System in South Liaoning Province, China. Liaoning Geology 1–2: 30–43.
Dutta, S., M. Steiner, S. Banerjee, B.-D. Erdtmann, S. Jeevankumar, and U. Mann. 2006. Chuaria circularis from the early Mesoproterozoic Suket Shale, Vindhyan Supergroup, India: Insights from light and electron microscopy and pyrolysis-gas chromatography. Journal of Earth System Science 115(1): 99–112.
Fairchild, I.J., B. Spiro, P.M. Herrington, and T. Song. 2000. Controls on Sr and C isotope compositions of Neoproterozoic Sr rich limestones of East Greenland and North China. SEPM (Society for Sedimentary Geology) 67: 297–313. (Special Publication).
Gehling, J.G., G.M. Narbonne, and M.M. Anderson. 2000. The first named Ediacaran body fossils, Aspidella terranovica. Palaeontology 43(3): 427–456.
Gerdes, G., M. Claes, K. Dunajtschik-Piewak, H. Riege, W. Krumbein, and H.-E. Reineck. 1993. Contribution of microbial mats to sedimentary surface structures. Facies 29(1): 61–74.
Geological Survey Group of Liaoning Province Team 1. 1972. Instruction Book for the 1:200000 Geological map of Fuzhou, Lvshun, Dalian and Dengshahe Region. In Geological Map of Liaoning Province.
Goldstein, S.T. 2002. Foraminifera: A biological overview. In Modern Foraminifera, ed. B.K.S. Gupta, 37–55. New York, Boston, Dordrecht, London, Moscow: Kluwer Academic Publishers.
Grazhdankin, D., and G. Gerdes. 2007. Ediacaran microbial colonies. Lethaia 40(3): 201–210.
Hofmann, H.J. 1985. The Mid-Proterozoic Little Dal Macrobiota, Mackenzie Mountains, North-West Canada. Palaeontology 28(2): 331–354.
Hofmann, H.J., G.M. Narbonne, and J.D. Aitken. 1990. Ediacaran remains from intertillite beds in northwestern Canada. Geology 18(12): 1199–1202.
Hong, Z., Z. Huang, and X. Liu. 1991. Geology of Upper Precambrian in southern Liaodong Peninsula. Special Reports on Geology from the Ministry of Geology and Mineral Resources, People’s Republic of China. Beijing: Geological Publishing House.
Hong, Z., Z. Huang, X. Yang, J. Lan, B. Xian, and Y. Yang. 1988. Medusoid fossils from the Sinian Xingmincun Formation of southern Liaoning. Acta Geologica Sinica 62(3): 200–209.
Hong, Z., Y. Yang, and X. Liu. 1990. Archaeocyathid fossils from the Lower Cambrian Jianchang Formation of the southern Liaodong Peninsula. Geological Review 36(6): 558–563.
Jensen, S., T. Palacios, and M.M. Mus. 2007. A brief review of the fossil record of the Ediacaran-Cambrian transition in the area of Montes de Toledo-Guadalupe, Spain. Geological Society, London, Special Publications 286(1): 223–235.
Lei, M., and X. Zhang. 2008. Research on morphology of modern microbial colonies and the implication for interpreting the affinities of the Ediacara Biota. Acta Palaeontologica Sinica 47(4): 468–476.
Lobban, C.S., and P.J. Harrison. 1997. Seaweed life histories. In Seaweed Ecology and Physiology, 32–47. Cambridge: Cambridge University Press.
MacGabhann, B.A. 2007. Discoidal fossils of the Ediacaran biota: A review of current understanding. In The Rise and Fall of the Ediacaran Biota, eds. P. Vickers-Rich, and P. Komarower, 297–313. London: Geological Society (London, Special Publications).
Maruyama, Y.K. 2004. Occurrence in the field of a long-term, year-round, stable population of placozoans. The Biological Bulletin 206(1): 55–60.
Meert, J.G., A.S. Gibsher, N.M. Levashova, W.C. Grice, G.D. Kamenov, and A.B. Ryabinin. 2011. Glaciation and ~770 Ma Ediacara (?) fossils from the Lesser Karatau microcontinent, Kazakhstan. Gondwana Research 19(4): 867–880.
Morad, S. 1986. SEM study of authigenic rutile, anatase and brookite in Proterozoic sandstones from Sweden. Sedimentary Geology 46(1–2): 77–89.
Narbonne, G.M. 2005. The Ediacara Biota: Neoproterozoic origin of animals and their ecosystems. Annual Reviews of Earth and Planetary Sciences 33: 421–442.
Narbonne, G.M., S. Xiao, and G.A. Shields. 2012. The Ediacaran Period. In The Geological Time Scale 2012, eds. F.M. Gradstein, J.G. Ogg, M.Schmitz, and G. Ogg, 413–435. Elsevier.
Niu, S., M. Wang, and H. Dong. 1988. The discovery of the fossil medusoids (genera Cyclomedusa etc., Cnidaria) from Xingmincun formation, Sinian system in Jinxian County, Liaoning Province, China and its significance. Bulletin of the Tianjin Institute of Geology and Mineral Resources, Chinese Academy of Geological Sciences 19: 75–86.
Orr, P.J., D.E.G. Briggs, and S.L. Kearns. 1998. Cambrian Burgess Shale animals replicated in clay minerals. Science 281: 1173–1175.
Ou, Z., and F. Meng. 2013. Precambrian “medusoid” fossils from the Xingmincun Formation of southern Liaoning Province: A new insight. Acta Micropalaeontologica Sinica 30(1): 99–106.
Peterson, K.J., B. Waggoner, and J.W. Hagadorn. 2003. A fungal analog for Newfoundland Ediacaran fossils? Integrative and Comparative Biology 43(1): 127–136.
Qiao, X., L. Gao, and Y. Peng. 2001. Neoproterozoic in Paleo-Tanlu Fault Zone: Catastrophe, Sequences and Biostratigraphy, 128. Beijing: Geological Publishing House.
Russell, F.S. 1953. Introduction: The structural characters of Medusae. In The medusae of the British Isles, 1–21. Cambridge: Cambridge University Press.
Schiffbauer, J.D., S. Xiao, Y. Cai, A.F. Wallace, H. Hua, J. Hunter, H. Xu, Y. Peng, and A.J. Kaufman. 2014. A unifying model for Neoproterozoic–Palaeozoic exceptional fossil preservation through pyritization and carbonaceous compression. Nature Communications 5: 5754.
Sharma, M., S. Mishra, S. Dutta, S. Banerjee, and Y. Shukla. 2009. On the affinity of Chuaria-Tawuia complex: A multidisciplinary study. Precambrian Research 173(1–4): 123–136.
Shields, G.A. 2002. ‘Molar-tooth microspar’: A chemical explanation for its disappearance ~750 Ma. Terra Nova 14: 108–113.
Shields-Zhou, G.A., A.C. Hill, and B.A. MacGabhann. 2012. The Cryogenian Period. In The Geological Time Scale 2012, eds. F.M. Gradstein, J.G. Ogg, M. Schmitz, and G. Ogg, 393–411. Elsevier.
Srivastava, M., E. Begovic, J. Chapman, N.H. Putnam, U. Hellsten, T. Kawashima, A. Kuo, et al. 2008. The Trichoplax genome and the nature of placozoans. Nature 454(7207): 955–960.
Stretch, J.J., and J.M. King. 1980. Direct fission: An undescribed reproductive method in hydromedusae. Bulletin of Marine Science 30(2): 522–525.
Tang, F. 1997. Megafossils and stratigraphy of the Late Precambrian strata in eastern margin of the North China Platform. Unpublished PhD thesis, 56. Beijing: Chinese Academy of Geological Sciences.
Tang, F., C. Yin, L. Gao, P. Liu, Z. Wang, and S. Chen. 2009. Macrofossil records of the Neoproterozoic in the eastern of North China Craton: An implement of Neoproterozoic biostratigraphy. Geological Review 55(3): 305–317.
Thiemann, M., and A. Ruthmann. 1991. Alternative modes of asexual reproduction in Trichoplax adhaerens (Placozoa). Zoomorphology 110(3): 165–174.
Totten, M.W., and H. Blatt. 1996. Sources of silica from the illite to muscovite transformation during late-stage diagenesis of shales. SEMP 55: 85–92 (Special Publication).
Walker, G.M., and N.A. White. 2005. Introduction to fungal physiology. In Fungi: Biology and Applications, ed. K. Kavanagh, 1–35. Chichester: Wiley.
Wang, M. 1991. Sinian medusas from Dalian, Liaoning Province, China. Journal of Changchun University of Earth Science 21(3): 259–312.
Xiao, S., J.D. Schiffbauer, K.A. McFadden, and J. Hunter. 2010. Petrographic and SIMS pyrite sulfur isotope analyses of Ediacaran chert nodules: Implications for microbial processes in pyrite rim formation, silicification, and exceptional fossil preservation. Earth and Planetary Science Letters 297(3–4): 481–495.
Xiao, S., B. Shen, Q. Tang, A.J. Kaufman, X. Yuan, J. Li, and M. Qian. 2014. Biostratigraphic and chemostratigraphic constraints on the age of Early Neoproterozoic carbonate successions in North China. Precambrian Research 246: 208–225.
Xiao, S., X. Yuan, M. Steiner, and A.H. Knoll. 2002. Macroscopic carbonaceous compressions in a terminal Proterozoic shale: A systematic reassessment of the Miaohe Biota, South China. Journal of Paleontology 76(2): 347–376.
Xing, Y., and G. Liu. 1979. Coelenterate fossils from the Sinian System of southern Liaoning and its stratigraphical significance. Acta Geologica Sinica 3: 168–172.
Xing, Y. et al. 1989. Upper Precambrian in China. Stratigraphy of China, vol. 3, 314. Beijing: Geological Publishing House.
Xue, Y., R. Cao, T. Tang, L. Yin, C. Yu, and J. Yang. 2001. The Sinian stratigraphic sequence of the Yangtze region and correlation to the Late Precambrian strata of North China. Journal of Stratigraphy 25(3): 207–234.
Yang, S. 1984. Late Precambrian microplant fossils from southern Liaodong Peninsula and their stratigraphic significance. Bulletin of the Shenyang Institute of Geology and Mineral Resources, Chinese Academy of Geological Sciences 10: 107–130.
Yang, D., W. Xu, Y. Xu, Q. Wang, F. Pei, and F. Wang. 2012. U-Pb ages and Hf isotope data from detrital zircons in the Neoproterozoic sandstones of northern Jiangsu and southern Liaoning Provinces, China: Implications for the Late Precambrian evolution of the southeastern North China Craton. Precambrian Research 216–219: 162–176.
Young, G.A., and J.W. Hagadorn. 2010. The fossil record of cnidarian medusae. Palaeoworld 19(3–4): 212–221.
Zhang, X., H. Hua, and J. Reitner. 2006. A new type of Precambrian megascopic fossils: The Jinxian biota from northeastern China. Facies 52: 169–181.
Zhao, F., J.-B. Caron, S. Hu, and M. Zhu. 2009. Quantitative analysis of taphofacies and paleocommunities in the Early Cambrian Chengjiang Lagerstätte. Palaios 24(12): 826–839.
Zheng, W., J. Yang, T. Hong, X. Tao, and Z. Wang. 2004. Sr and C isotopic correlation and the age boundary determination for the Neoproterozoic in the southern Liaoning and northern Jiangsu—northern Anhui Provinces. Geological Journal of China Universities 10(2): 165–178.
Zhu, M., L.E. Babcock, and M. Steiner. 2005. Fossilization modes in the Chengjiang Lagerstätte (Cambrian of China): Testing the roles of organic preservation and diagenetic alteration in exceptional preservation. Palaeogeography, Palaeoclimatology, Palaeoecology 220: 31–46.
Acknowledgments
We appreciate Prof. X. Zhang (Northwest University, China) for granting us access to his fossil collection; M. Wang, L. Na, and H. He for the assistance provided in the field; and X. Cheng, C. Wang, E. Zhuo, and Dr. N. Schäfer for the help provided with the laboratory work. The discussions with and suggestions from Dr. Z. Yin, Dr. S. Hu, Dr. M. Lü, Prof. D. Jackson, and Dr. B.A. MacGabhann were enlightening and beneficial. We are also grateful to the reviewers Dr. S. Jensen and Dr. J. Schiffbauer for their encouraging and constructive comments on the manuscripts. The project was supported by the Chinese Academy of Science (KZZD-EW-02-2), the Ministry of Science and Technology of China (2013CB835006), and the National Natural Science Foundation of China. The Courant Research Center of Geobiology—Göttingen (German Excellence Initiative, DFG) and the China Scholarship Council (CSC) are also acknowledged for the financial support provided.
Author information
Authors and Affiliations
Corresponding author
Electronic supplementary material
Below is the link to the electronic supplementary material.
12542_2016_289_MOESM2_ESM.xlsx
Supp. 2 Fossil thickness used in the diagram shown in Fig. 5i (XLSX 10 kb)
Rights and permissions
About this article
Cite this article
Luo, C., Zhu, M. & Reitner, J. The Jinxian Biota revisited: taphonomy and body plan of the Neoproterozoic discoid fossils from the southern Liaodong Peninsula, North China. PalZ 90, 205–224 (2016). https://doi.org/10.1007/s12542-016-0289-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12542-016-0289-5