Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Artificial intelligence in the treatment of cancer: Changing patterns, constraints, and prospects

  • Review Paper
  • Published:
Health and Technology Aims and scope Submit manuscript

Abstract

Purpose

Artificial intelligence (AI) has contributed to the advancement of medical research, particularly cancer research. AI technology is an inclusive science comprising computer science, cybernetics, psychology, neurophysiology, medical science, and dialectology.

Methods

In the present review, we first addressed the new developments of AI in the oncology-related area and its application in the progression of anticancer drugs and treatment. Then, we discuss the state-of-the-art status and progress outlook of AI.

Results

Comprehensive Cancer Information from the National Cancer Institute (NCI) suggests that AI, deep learning (DL), and machine learning (ML) can be utilized to improve patient outcomes in cancer care. AI technology can be used to anticipate the action of anticancer drugs and/or aid in the development of anticancer drugs. AI technology can aid physicians in making accurate treatments, decreasing nonessential surgeries, and assisting oncologists in progressing treatment plans for cancer patients. Thus, AI can improve the speed and accuracy of cancer detection, assist with clinical decision-making, and result in better health outcomes.

Conclusions

We conclude by summarizing the challenges and possible future directions—along with their limitations—of AI-assisted anticancer medication research in the context of cancer. The application of AI in cancer research has a significant future in prognostication and decision-making given the expanding tendency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References     

  1. Kaul V, Enslin S, Gross SA. History of artificial intelligence in medicine. Gastrointest Endosc. 2020;92:807–12.

    Article  Google Scholar 

  2. Lo CM, Iqbal U, Li YJ. Cancer quantification from data mining to artificial intelligence. Comput Methods Programs Biomed. 2017;145:A1.

    Article  Google Scholar 

  3. Bi WL, Hosny A, Schabath MB, Giger ML, Birkbak NJ, et al. Artificial intelligence in cancer imaging: clinical challenges and applications. CA Cancer J Clin. 2019;69(2):127–57.

    Article  Google Scholar 

  4. van der Waal I. Skin cancer diagnosed using artificial intelligence on clinical images. Oral Dis. 2018;24(6):873–4.

    Article  Google Scholar 

  5. Houssami N, Kirkpatrick-Jones G, Noguchi N, Lee CI. Artificial Intelligence (AI) for the early detection of breast cancer: a scoping review to assess AI’s potential in breast screening practice. Expert Rev Med Devices. 2019;16(5):351–62.

    Article  Google Scholar 

  6. Claudio L, Antonio P, Aldo S. Artificial intelligence in oncology: current applications and future perspectives. Br J Cancer. 2021;2022(126):4–9.

    Google Scholar 

  7. Hamamoto R, Suvarna K, Yamada M, Kobayashi K, Shinkai N, Miyake M, et al. Application of artificial intelligence technology in oncology: towards the establishment of precision medicine. Cancers (Basel). 2020;12:3532.

    Article  Google Scholar 

  8. Kann BH, Hosny A, Aerts HJWL. Artificial intelligence for clinical oncology. Cancer Cell. 2021;39:916–27.

    Article  Google Scholar 

  9. Huynh E, Hosny A, Guthier C, Bitterman DS, Petit SF, Haas-Kogan DA, et al. Artificial intelligence in radiation oncology. Nat Rev Clin Oncol. 2020;17:771–81.

    Article  Google Scholar 

  10. Bhinder B, Gilvary C, Madhukar NS, Elemento O. Artificial intelligence in cancer research and precision medicine. Cancer Disco. 2021;11:900–15.

    Article  Google Scholar 

  11. Benzekry S. Artificial intelligence and mechanistic modeling for clinical decision making in oncology. Clin Pharmacol Ther. 2020;108:471–86.

    Article  Google Scholar 

  12. Lee D, Yoon S. Application of Artificial Intelligence-Based Technologies in the Healthcare Industry: Opportunities and Challenges. Int J Environ Res Public Health. 2021;18:271.

    Article  Google Scholar 

  13. Lee H, Chen Y. Image Based Computer Aided Diagnosis System for Cancer Detection. Expert Syst Appl. 2015;42:5356–65 (https://www.sciencedirect.com/science/article/abs/pii/S0957417415000986?via%3Dihub (accessed on 13 October 2022)).

    Article  Google Scholar 

  14. Sasieni P. Evaluation of the UK breast screening programmes. Ann Oncol. 2003;14:1206–8.

    Article  Google Scholar 

  15. Maroni R, Massat NJ, Parmar D, Dibden A, Cuzick J, Sasieni PD, Duffy SW. A case-control study to evaluate the impact of the breast screening programme on mortality in England. Br J Cancer. 2020;124:736–43.

    Article  Google Scholar 

  16. Esserman LJ. The WISDOM Study: Breaking the deadlock in the breast cancer screening debate. NPJ Breast Cancer. 2017;3:34.

    Article  Google Scholar 

  17. Dembrower K, Wåhlin E, Liu Y, Salim M, Smith K, Lindholm P, Eklund M, Strand F. Effect of artificial intelligence-based triaging of breast cancer screening mammograms on cancer detection and radiologist workload: A retrospective simulation study. Lancet Digit Health. 2020;2:e468–74.

    Article  Google Scholar 

  18. Meystre SM, Heider PM, Kim Y, Aruch DB, Britten CD. Automatic trial eligibility surveillance based on unstructured clinical data. Int J Med Inform. 2019;129:13–9.

    Article  Google Scholar 

  19. Beck JT, Rammage M, Jackson GP, Preininger AM, Dankwa-Mullan I, Roebuck MC, Torres A, Holtzen H, Coverdill SE, Williamson MP, et al. Artificial Intelligence Tool for Optimizing Eligibility Screening for Clinical Trials in a Large Community Cancer Center. JCO Clin Cancer Inform. 2020;4:50–9.

    Article  Google Scholar 

  20. Huang S, Yang J, Fong S, Zhao Q. Artificial intelligence in cancer diagnosis and prognosis: Opportunities and challenges. Cancer Lett. 2020;471:61–71.

    Article  Google Scholar 

  21. Hunter B, Hindocha S, Lee RW. The Role of Artificial Intelligence in Early Cancer Diagnosis. Cancers. 2022;14:1524. https://doi.org/10.3390/cancers14061524.

    Article  Google Scholar 

  22. Anderson M, O’Neill C, Macleod Clark J, Street A, Woods M, Johnston-Webber C, Charlesworth A, Whyte M, Foster M, Majeed A, et al. Securing a sustainable and fit-for-purpose UK health and care workforce. Lancet. 2021;397:1992–2011.

    Article  Google Scholar 

  23. Van Haren RM, Delman AM, Turner KM, Waits B, Hemingway M, Shah SA, Starnes SL. Impact of the COVID-19 Pandemic on Lung Cancer Screening Program and Subsequent Lung Cancer. J Am Coll Surg. 2021;232:600.

    Article  Google Scholar 

  24. Armato SG, McLennan G, Bidaut L, McNitt-Gray MF, Meyer CR, Reeves AP, Zhao B, Aberle DR, Henschke CI, Hoffman EA, et al. The Lung Image Database Consortium (LIDC) and Image Database Resource Initiative (IDRI): A Completed Reference Database of Lung Nodules on CT scans. Med Phys. 2011;38:915–31.

    Article  Google Scholar 

  25. Gehrung M, Crispin-Ortuzar M, Berman AG, O’Donovan M, Fitzgerald RC, Markowetz F. Triage-driven diagnosis of Barrett’s esophagus for early detection of esophageal adenocarcinoma using deep learning. Nat Med. 2021;27:833–41.

    Article  Google Scholar 

  26. Shaheen NJ, Falk GW, Iyer PG, Gerson LB. ACG Clinical Guideline: Diagnosis and Management of Barrett’s Esophagus. Am J Gastroenterol. 2016;111:30–50.

    Article  Google Scholar 

  27. Fitzgerald RC, di Pietro M, O’Donovan M, Maroni R, Muldrew B, Debiram-Beecham I, Gehrung M, Offman J, Tripathi M, Smith SG, et al. Cytosponge-trefoil factor 3 versus usual care to identify Barrett’s oesophagus in a primary care setting: A multicentre, pragmatic, randomised controlled trial. Lancet. 2020;396:333–44.

    Article  Google Scholar 

  28. Mirbabaie M, Stieglitz S, Frick N. Artificial intelligence in disease diagnostics: A critical review and classification on the current state of research guiding future direction. Health Technol. 2021;11:693–731.

    Article  Google Scholar 

  29. Cao L, Yang J, Rong Z, Li L, Xia B, You C, Lou G, Jiang L, Du C, Meng H, et al. A novel attention-guided convolutional network for the detection of abnormal cervical cells in cervical cancer screening. Med Image Anal. 2021;73:102197.

    Article  Google Scholar 

  30. Abriata LA, Dal Peraro M. State-of-the-art web services for de novo protein structure prediction. Brief Bioinform. 2021;22(3):bbaa139. https://doi.org/10.1093/bib/bbaa139.

  31. Xuan P, Zhang Y, Cui H, Zhang T, Guo M, Nakaguchi T. Integrating multi-scale neighbouring topologies and cross-modal similarities for drug-protein interaction prediction. Brief Bioinform. 2021;22(5):bbab119. https://doi.org/10.1093/bib/bbab119.

  32. You J, Liu B, Ying Z, Pande V, Leskovec J. Graph convolutional policy network for goal-directed molecular graph generation. Adv Neural Inform Process Syst. 2018;31. https://doi.org/10.48550/arXiv.1806.02473.

  33. Wang L, Song Y, Wang H, Zhang X, Wang M, He J, Li S, Zhang L, Li K, Cao L. Advances of Artificial Intelligence in Anti-Cancer Drug Design: A Review of the Past Decade. Pharmaceuticals. 2023;16(2):253.

    Article  Google Scholar 

  34. Lind AP, Anderson PC. Predicting drug activity against cancer cells by random forest models based on minimal genomic information and chemical properties. PLoS ONE. 2019;14(7):e0219774.

    Article  Google Scholar 

  35. Wang Y, Wang Z, Xu J, Li J, Li S, Zhang M, Yang D. Systematic identification of non-coding pharmacogenomic landscape in cancer. Nat Commun. 2018;9(1):3192.

    Article  Google Scholar 

  36. Li Q, Qi L, Feng QX, Liu C, Sun SW, Zhang J, Yang G, Ge YQ, Zhang YD, Liu XS. Machine learning-based computational models derived from large-scale radiographic-radiomic images can help predict adverse histopathological status of gastric Cancer. Clin Transl Gastroenterol. 2019;10(10):e00079.

    Article  Google Scholar 

  37. Stanzione A, Cuocolo R, Del Grosso R, Nardiello A, Romeo V, Travaglino A, Raffone A, Bifulco G, Zullo F, Insabato L, Maurea S, Mainenti PP. Deep Myometrial Infiltration of Endometrial Cancer on MRI: A Radiomics-Powered Machine Learning Pilot Study. Acad Radiol. 2021;28(5):737–44. https://doi.org/10.1016/j.acra.2020.02.028.

    Article  Google Scholar 

  38. Venkateswaramurthy N. Role of Artificial Intelligence in Cancer Chemotherapy. Available at: https://www.linkedin.com/pulse/role-artificial-intelligence-cancer-chemotherapy-venkateswaramurthy-n/. Accessed 8 Jun 2022.

  39. Babier A, Boutilier JJ, McNiven AL, Chan TCY. Knowledge-based automated planning for oropharyngeal cancer. Med Phys. 2018;45(7):2875–83.

    Article  Google Scholar 

  40. Jabbari P, Rezaei N. Artificial intelligence and immunotherapy. Expert Rev Clin Immunol. 2019;15(7):689–91.

    Article  Google Scholar 

  41. Goldenberg SL, Nir G, Salcudean SE. A new era: artificial intelligence and machine learning in prostate cancer. Nat Rev Urol. 2019;16(7):391–403.

    Article  Google Scholar 

  42. Chen G, Tsoi A, Xu H, Zheng WJ. Predict effective drug combination by deep belief network and ontology fingerprints. J Biomed Inform. 2018;85:149–54.

    Article  Google Scholar 

  43. Pantuck AJ, Lee T, Kee DK, et al. Modulating BET bromodomain inhibitor ZEN-3694 and enzalutamide combination dosing in a metastatic prostate Cancer patient using CURATE.AI, an artificial intelligence platform. Adv Ther. 2018;1(6):1800104. https://doi.org/10.1002/adtp.201800104.

    Article  Google Scholar 

  44. Gulhan DC, Lee JJ, Melloni GEM, Cortes-Ciriano I, Park PJ. Detecting the mutational signature of homologous recombination deficiency in clinical samples. Nat Genet. 2019;51(5):912–9.

    Article  Google Scholar 

  45. Dorman SN, Baranova K, Knoll JH, Urquhart BL, Mariani G, Carcangiu ML, Rogan PK. Genomic signatures for paclitaxel and gemcitabine resistance in breast cancer derived by machine learning. Mol Oncol. 2016;10(1):85–100.

    Article  Google Scholar 

  46. Tang X, Huang Y, Lei J, Luo H, Zhu X. The single-cell sequencing: new developments and medical applications. Cell Biosci. 2019;9:53.

    Article  Google Scholar 

  47. Simon AB, Vitzthum LK, Mell LK. Challenge of Directly Comparing Imaging-Based Diagnoses Made by Machine Learning Algorithms With Those Made by Human Clinicians. J Clin Oncol. 2020;38(16):1868–1869. https://doi.org/10.1200/JCO.19.03350.

  48. Nascimento ACA, Prudencio RBC, Costa IG. A drug-target network-based supervised machine learning repurposing method allowing the use of multiple heterogeneous information sources, Methods Mol. Biol. 2019;1903:281–9.

    Google Scholar 

  49. Vamathevan J, Clark D, Czodrowski P, Dunham I, et al. Applications of machine learning in drug discovery and development. Nat Rev Drug Discov. 2019;18(6):463–77.

    Article  Google Scholar 

  50. Koromina M, Pandi MT, Patrinos GP. Rethinking drug repositioning and development with artificial intelligence, machine learning, and omics. OMICS. 2019;23(11):539–48.

    Article  Google Scholar 

  51. Xia X, Gong J, Hao W, et al. Comparison and fusion of deep learning and radiomics features of ground-glass nodules to predict the invasiveness risk of Stage-I lung adenocarcinomas in CT scan. Front Oncol. 2020;10:418.

    Article  Google Scholar 

  52. Deng L, Yu D. Deep learning: methods and applications. Found Trends Signal Process. 2014;7:197–387. https://doi.org/10.1561/2000000039.

    Article  MathSciNet  Google Scholar 

  53. Muhammad JI, Zeeshan J, Haleema S, et al. Clinical applications of artificial intelligence and machine learning in cancer diagnosis: looking into the future. Cancer Cell Int. 2021;21:270. https://doi.org/10.1186/s12935-021-01981-1.

    Article  Google Scholar 

  54. Sebastian AM, Peter D. Artificial Intelligence in Cancer Research: Trends. Challenges and Future Directions Life. 2022;12:1991. https://doi.org/10.3390/life12121991.

    Article  Google Scholar 

  55. Lin L, Dou Q, Jin YM, Zhou GQ, et al. Deep learning for automated contouring of primary tumor volumes by MRI for nasopharyngeal carcinoma. Radiology. 2019;291(3):677–86.

    Article  Google Scholar 

  56. Meyer P, Noblet V, Mazzara C, Lallement A. Survey on deep learning for radiotherapy. Comput Biol Med. 2018;98:126–46.

    Article  Google Scholar 

  57. Kang G, Liu K, Hou B, Zhang N. 3D multi-view convolutional neural networks for lung nodule classification. PLoS ONE. 2017;12:e0188290.

    Article  Google Scholar 

  58. Kann BH, Aneja S, Loganadane GV, et al. Pre-treatment identification of head and neck cancer nodal metastasis and extranodal extension using deep learning neural networks. Sci Rep. 2018;8:14036. https://doi.org/10.1038/s41598-018-32441-y.

    Article  Google Scholar 

  59. Bejnordi BE, Veta M, van, Diest. P.J., et al. Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer. JAMA. 2017;318:2199–210.

    Article  Google Scholar 

  60. Coudray N, Ocampo PS, Sakellaropoulos T, et al. Classification and mutation prediction from non–small cell lung cancer histopathology images using deep learning. Nat Med. 2018;24:1559–67.

    Article  Google Scholar 

  61. Ibragimov B, Toesca D, Chang D, et al. Development of deep neural network for individualized hepatobiliary toxicity prediction after liver SBRT. Med Phys. 2018;45:4763–74.

    Article  Google Scholar 

  62. Eulenberg P, Niklas K, Thomas B, et al. Reconstructing cell cycle and disease progression using deep learning. Nat Commun. 2017;8:463.

    Article  Google Scholar 

  63. Cha KH, Hadjiiski L, Chan HP, Weizer AZ, Alva A, Cohan RH, Caoili EM, Paramagul C, Samala RK. Bladder Cancer treatment response assessment in CT using radiomics with deep-learning. Sci Rep. 2017;7(1):8738.

    Article  Google Scholar 

  64. Golden JA. Deep learning algorithms for detection of lymph node metastases from breast Cancer: helping artificial intelligence Be seen. JAMA. 2017;318(22):2184–6.

    Article  Google Scholar 

  65. Liao S, Gao Y, Oto A, Shen D. Representation learning: a unified deep learning framework for automatic prostate MR segmentation. Med Image Comput Comput Assist Interv. 2013;16:254–61.

    Google Scholar 

  66. Ngiam KY, Khor W. Big data and machine learning algorithms for healthcare delivery. Lancet Oncol. 2019;20(5):e262–73.

    Article  Google Scholar 

  67. Printz C. Artificial intelligence platform for oncology could assist in treatment decisions. Cancer. 2017;123(6):905.

    Article  Google Scholar 

  68. Russakovsky O, Deng J, Su H, et al. ImageNet large scale visual recognition challenge. Int J Comput Vis. 2015;115:211–52.

    Article  MathSciNet  Google Scholar 

  69. Chang K, Bai HX, Zhou H, et al. Residual convolutional neural network for determination of IDH status in low- and high-grade gliomas from MR imaging. Clin Cancer Res. 2018;24:1073–81.

    Article  Google Scholar 

  70. Lu Y, Yu Q, Gao Y, et al. Identification of metastatic lymph nodes in MR imaging with faster region-based convolutional neural networks. Cancer Res. 2018;8:5135–43.

    Article  Google Scholar 

  71. Ribli D, Horvath A, Unger Z, et al. Detecting and classifying lesions in mammograms with deep learning. Sci Rep. 2018;8(4165):1–7.

    Google Scholar 

  72. Wang P, Xiao X, Brown JRG, et al. Development and validation of a deep-learning algorithm for the detection of polyps during colonoscopy. Nat Biomed Eng. 2018;2:741–8.

    Article  Google Scholar 

  73. Nikolov S, Blackwell S, Mendes R, et al. Deep learning to achieve clinically applicable segmentation of head and neck anatomy for radiotherapy. 2018. https://arxiv.org/abs/1809.04430. Accessed  8 Nov 2018.

  74. Kann BH, Aneja S, Loganadane GV, et al. Pretreatment identification of head and neck cancer nodal metastasis and extranodal extension using deep learning neural networks. Sci Rep. 2018;8(14036):1–11.

    Google Scholar 

  75. Esteva A, Kuprel B, Novoa RA, et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature. 2017;542:115–8.

    Article  Google Scholar 

  76. Fehr D, Veeraraghavan H, Wibmer A, et al. Automatic classification of prostate cancer Gleason scores from multiparametric magnetic resonance images. Proc Natl Acad Sci U S A. 2015;112(46):E6265–73.

    Article  Google Scholar 

  77. Miotto R, Li L, Kidd BA, Dudley JT. Deep patient: an unsupervised representation to predict the future of patients from the electronic health records. Sci Rep. 2016;6(26094):1–10.

    Google Scholar 

  78. Zitnik M, Agrawal M, Leskovec J. Modeling polypharmacy side effects with graph convolutional networks. Bioinformatics. 2018;34:i457–66.

    Article  Google Scholar 

  79. Kang J, Schwartz R, Flickinger J, Beriwal S. Machine learning approaches for predicting radiation therapy outcomes: a clinician’s perspective. Int J Radiat Oncol. 2015;93:1127–35.

    Article  Google Scholar 

  80. Pella A, Cambria R, Riboldi M, et al. Use of machine learning methods for prediction of acute toxicity in organs at risk following prostate radiotherapy. Med Phys. 2011;38:2859–67.

    Article  Google Scholar 

  81. Zhen X, Chen J, Zhong Z, et al. Deep convolutional neural network with transfer learning for rectum toxicity prediction in cervical cancer radiotherapy: a feasibility study. Phys Med Biol. 2017;62:8246–63.

    Article  Google Scholar 

  82. Lao J, Chen Y, Li ZC, et al. A deep learning-based radiomics model for prediction of survival in glioblastoma multiforme. Sci Rep. 2017;7(10353):1–8.

    Google Scholar 

  83. Yousefi S, Amrollahi F, Amgad M, et al. Predicting clinical outcomes from large scale cancer genomic profiles with deep survival models. Sci Rep. 2017;7(11707):1–11.

    Google Scholar 

  84. Aerts HJ, Velazquez ER, Leijenaar RT, et al. Decoding phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun. 2014;5(4006):1–8.

    Google Scholar 

  85. Chaudhary K, Poirion OB, Lu L, Garmire LX. Deep learning–based multiomics integration robustly predicts survival in liver cancer. Clin Cancer Res. 2018;24:1248–59.

    Article  Google Scholar 

  86. Bibault JE, Giraud P, Durdux C, et al. Deep learning and radiomics predict complete response after neo-adjuvant chemoradiation for locally advanced rectal cancer. Sci Rep. 2018;8(12611):1–8.

    Google Scholar 

  87. Carrara M, Massari E, Cicchetti A, et al. Development of a ready-to-use graphical tool based on artificial neural network classification: application for the prediction of late fecal incontinence after prostate cancer radiation therapy. Int J Radiat Oncol. 2018;102(5):1533–42.

    Article  Google Scholar 

  88. Wang J, Cao H, Zhang JZH, Qi Y. Computational protein design with deep learning neural networks. Sci Rep. 2018;8(6349):1–8.

    Google Scholar 

  89. Buggenthin F, Buettner F, Hoppe PS, et al. Prospective identification of hematopoietic lineage choice by deep learning. Nat Methods. 2017;14:403–6.

    Article  Google Scholar 

  90. Askr H, Elgeldawi E, Aboul Ella H, Elshaier YAMM, Gomaa MM, Hassanien AE. Deep learning in drug discovery: an integrative review and future challenges. Artif Intell Rev. 2023;56(7):5975–6037. https://doi.org/10.1007/s10462-022-10306-1.

    Article  Google Scholar 

  91. Menden MP, Iorio F, Garnett M, et al. Machine learning prediction of cancer cell sensitivity to drugs based on genomic and chemical properties. PLoS ONE. 2013;8(4):e61318.

    Article  Google Scholar 

  92. Han Y, Kim D. Deep convolutional neural networks for pan-specific peptide-MHC class I binding prediction. BMC Bioinformatics. 2017;18(585):1–9.

    Google Scholar 

  93. Sun R, Limkin EJ, Vakalopoulou M, et al. A radiomics approach to assess tumour-infiltrating CD8 cells and response to anti-PD- 1 or anti-PD-L1 immunotherapy: an imaging biomarker, retrospective multicohort study. Lancet Oncol. 2018;19(9):1180–91.

    Article  Google Scholar 

  94. Bulik-Sullivan B, Busby J, Palmer CD, et al. Deep learning using tumor HLA peptide mass spectrometry datasets improves neoantigen identification. Nat Biotechnol. 2019;37:55–63.

    Article  Google Scholar 

  95. Kuang C. Can A.I. be taught to explain itself? The New York Times. 2017. https://www.nytimes.com/2017/11/21/magazine/can-ai-be-taught-to-explain-itself.html. Accessed on August 14, 2023.

  96. Zhang QS, Zhu SC. Visual interpretability for deep learning: a survey. Frontiers Inf Technol Electronic Eng. 2018;19:27–39. https://doi.org/10.1631/FITEE.1700808.

    Article  Google Scholar 

  97. Hu L, Bell D, Antani S, Xue Z, Yu K, et al. An observational study of deep learning and automated evaluation of cervical images for Cancer screening. J Natl Cancer Inst. 2019;111:923–32.

    Article  Google Scholar 

  98. Bahl M, Barzilay R, Yedidia AB, Locascio NJ, Yu L, Lehman CD. High-risk breast lesions: a machine learning model to predict pathologic upgrade and reduce unnecessary surgical excision. Radiology. 2018;286(3):810–8.

    Article  Google Scholar 

  99. Preuer K, Lewis RPI, Hochreiter S, et al. Deep Synergy: predicting anticanceranti-cancer drug synergy with Deep Learning. Bioinformatics. 2018;34:1538–46.

    Article  Google Scholar 

  100. Aliper A, Plis S, Artemov A, et al. Deep learning applications for predicting pharmacological properties of drugs and drug repurposing using transcriptomic data. Mol Pharm. 2016;13:2524–30.

    Article  Google Scholar 

  101. Zech JR, Badgeley MA, Liu M, et al. Variable generalization performance of a deep learning model to detect pneumonia in chest radiographs: a cross-sectional study. PLOS Med. 2018;15:e1002683.

    Article  Google Scholar 

  102. Lambin P, Roelofs E, Reymen B, et al. ‘Rapid learning health care in oncology’: an approach towards decision support systems enabling customised radiotherapy. Radiother Oncol. 2013;109:159–64.

    Article  Google Scholar 

  103. Char DS, Abràmoff MD, Feudtner C. Identifying ethical considerations for machine learning healthcare applications. Am J Bioeth. 2020;20(11):7–17.

    Article  Google Scholar 

  104. Fiske A, Henningsen P, Buyx A. Your robot therapist will see you now: ethical implications of embodied artificial intelligence in psychiatry, psychology, and psychotherapy. J Med Internet Res. 2019;21(5):e13216.

    Article  Google Scholar 

  105. Challen R, Denny J, Pitt M, Gompels L, Edwards T, Tsaneva-Atanasova KM. Artificial intelligence, bias and clinical safety. BMJ Qual Saf. 2019;28(3):231–7.

    Article  Google Scholar 

  106. Buchanan C, Howitt ML, Wilson R, Booth RG, Risling T, Bamford M. Predicted influences of artificial intelligence on the domains of nursing: scoping review. JMIR Nurs. 2020;3(1):e23939.

    Article  Google Scholar 

  107. Chen JH, Asch SM. Machine learning and prediction in medicine— beyond the peak of inflated expectations. N Engl J Med. 2017;376(26):2507.

    Article  Google Scholar 

  108. Rawson TM, Ahmad R, Toumazou C, Georgiou P, Holmes AH. Artificial intelligence can improve decision-making in infection management. Nat Hum Behav. 2019;3(6):543–5.

    Article  Google Scholar 

  109. Schaduangrat N, Lampa S, Simeon S, Gleeson MP, Spjuth O, Nantasenamat C. Towards reproducible computational drug discovery. J Cheminformatics. 2020;12(1):9.

    Article  Google Scholar 

  110. London JW. Cancer research data-sharing networks. JCO Clin Cancer Inform. 2018;2:1–3.

    Article  Google Scholar 

  111. Wilkinson MD, Dumontier M, Aalbersberg IJ, et al. The FAIR Guiding Principles for scientific data management and stewardship. Sci Data. 2016;3(160018):1–9.

    Google Scholar 

  112. Chavan, V., Penev, L. The data paper: a mechanism to incentivize data publishing in biodiversity science. BMC Bioinformatics 12 (Suppl 15), S2 (2011). https://doi.org/10.1186/1471-2105-12-S15-S2.

  113. Castelvecchi D. Can we open the black box of AI? Nat News. 2016;538:20.

    Article  Google Scholar 

  114. Antoniadi AM, Du Y, Guendouz Y, Wei L, Mazo C, Becker BA, Mooney C. Current Challenges and Future Opportunities for XAI in Machine Learning-Based Clinical Decision Support Systems: A Systematic Review. Applied Sciences. 2021; 11(11):5088. https://doi.org/10.3390/app11115088.

  115. Nie W, Bao Y, Zhao Y, Liu A. Long Dialogue Emotion Detection Based on Commonsense Knowledge Graph Guidance. IEEE Transactions on Multimedia. 2023; 26:514–528. https://doi.org/10.1109/TMM.2023.3267295.

  116. Feng Q, Dueva E, Cherkasov A, Ester M. PADME: a deep learning-based framework for drug-target interaction prediction. 2018. http://arxiv.org/abs/1807.09741. Accessed 4 Jun 2023.

  117. Baker M. 1,500 scientists lift the lid on reproducibility. Nature. 2016;533(7604):452-454. https://doi.org/10.1038/533452a.

  118. Kelly CJ, Karthikesalingam A, Suleyman M, Corrado G, King D. Key challenges for delivering clinical impact with artificial intelligence. BMC Med. 2019;17:1–9.

    Article  Google Scholar 

  119. Mascalchi M, Sali L. Lung cancer screening with low dose CT and radiation harm from prediction models to cancer incidence data. Ann Transl Med. 2017;5:360.

    Article  Google Scholar 

  120. Olah C, Satyanarayan A, Johnson I, et al. The building blocks of interpretability. Distill. 2019. Available at: https://distill.pub/2018/building-blocks/. Accessed 6 May 2023.

  121. Sennaar K. AI and machine learning for clinical trials: examining 3 current applications. Emerj - Artificial Intelligence Research and Insight. 2019. Available at: https://emerj.com/ai-sector-overviews/ai-machine-learning-clinical-trials-examining-x-current-applications/. Accessed 16 Mar 2023.

  122. Wani SUD, Khan NA, Thakur G, Gautam SP, Ali M, Alam P, Alshehri S, Ghoneim MM, Shakeel F. Utilization of Artificial Intelligence in Disease Prevention: Diagnosis, Treatment, and Implications for the Healthcare Workforce. Healthcare. 2022;10:608. https://doi.org/10.3390/healthcare10040608.

    Article  Google Scholar 

  123. Luchini C, Lawlor RT, Milella M, Scarpa A. Molecular tumor boards in clinical practice. Trends Cancer. 2020;6:738–44.

    Article  Google Scholar 

  124. Sherin L, Sohail A, Shujaat S. Time-dependent AI-Modeling of the anticancer efficacy of synthesized gallic acid analogues. Comput Biol Chem. 2019;79:137–46.

    Article  Google Scholar 

  125. Lianga G, Wenguo F, Hui L, Xiao Z. The emerging roles of artificial intelligence in cancer drug development and precision therapy. Biomed Pharmacother. 2022;128(2020):110255. https://doi.org/10.1016/j.biopha.2020.110255.

    Article  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

M.A. and S.U.D.W.: Conceptualization, methodology. M.A., S.U.D.W. and T.D.: resources, S.U.D.W., and S.M: data curation, M.A. and S.U.D.W.: writing—original draft preparation. M.A., and S.U.D.W writing—review and editing.

Corresponding author

Correspondence to Shahid Ud Din Wani.

Ethics declarations

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no known conflicts of interest that would have appeared to have an impact on the data discussed in this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, M., Wani, S.U.D., Dey, T. et al. Artificial intelligence in the treatment of cancer: Changing patterns, constraints, and prospects. Health Technol. 14, 417–432 (2024). https://doi.org/10.1007/s12553-024-00825-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12553-024-00825-y

Keywords