Abstract
The existing neutrosophic linguistic decision-making approach uses only one neutrosophic linguistic number (NLN) to express its evaluation value of an attribute in decision making. Sometimes, it may not reflect exactly what decision makers mean due to the ambiguity and indeterminacy of their cognitions to complex decision-making problems. In this situation, decision makers might hesitate among several NLNs to express their opinions. To deal with the issue, this paper defines hesitant neutrosophic linguistic numbers (HNLNs), the expected value of HNLN and proposes the generalized distance and similarity measure between two HNLN sets based on the least common multiple cardinality for HNLNs. Then, multiple attribute decision-making (MADM) methods are established based on the expected value and the similarity measure under a HNLN environment. In the proposed decision-making methods, the evaluation values of alternatives over attributes provided by decision makers are HNLNs, and then all the alternatives are ranked by the expected values of HNLNs and the similarity measure values between each alternative and the ideal alternative (ideal solution) to select the best one. An actual example on the selection problem of manufacturing alternatives is provided to demonstrate the applicability of the developed decision-making approaches. The decision results of manufacturing alternatives and the comparative analysis indicate that the proposed methods are effective and superior to existing ones. The MADM methods based on the expected value and the similarity measure can effectively deal with MADM problems with HNLN information and are more objective and more useful than the existing ones.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Zadeh LA. The concept of a linguistic variable and its application to approximate reasoning part I. Inf Sci. 1975;8(2):199–249. https://doi.org/10.1016/0020-0255(75)90036-5.
Herrera F, Herrera-Viedma E, Verdegay JL. A sequential selection process in group decision making with a linguistic assessment approach. Inf Sci. 1995;85(2):223–39. https://doi.org/10.1016/0020-0255(95)00025-K.
Herrera F, Herrera-Viedma E, Verdegay JL. A model of consensus in group decision making under linguistic assessments. Fuzzy Sets Syst. 1996;79(1):73–87.
Herrera F, Herrera-Viedma E. Aggregation operators for linguistic weighted information, IEEE transactions on systems. Man Cybern A. 1997;27(5):646–55. https://doi.org/10.1109/3468.618263.
Herrera F, Herrera-Viedma E. Linguistic decision analysis: steps for solving decision problems under linguistic information. Fuzzy Sets Syst. 2000;115(1):67–82. https://doi.org/10.1016/S0165-0114(99)00024-X.
Xu ZS. EOWA and EOWG operators for aggregating linguistic labels based on linguistic preference relations. Int J Uncertain, Fuzziness Knowl-Based Syst. 2004;12(6):791–810. https://doi.org/10.1142/S0218488504003211.
Xu ZS. A note on linguistic hybrid arithmetic averaging operator in multiple attribute group decision making with linguistic information. Group Decis Negot. 2006;15(6):593–604. https://doi.org/10.1007/s10726-005-9008-4.
Xu ZS. Goal programming models for multiple attribute decision making under linguistic setting. J Manag Sci China. 2006;9(2):9–17.
Meng F, Wang C, Chen X. Linguistic interval hesitant fuzzy sets and their application in decision making. Cogn Comput. 2016;8(1):52–68. https://doi.org/10.1007/s12559-015-9340-1.
Tian Z, Wang J, Wang J, Zhang H. A likelihood-based qualitative flexible approach with hesitant fuzzy linguistic information. Cogn Comput. 2016;8(4):670–83. https://doi.org/10.1007/s12559-016-9400-1.
Liu P, Tang G. Multi-criteria group decision-making based on interval neutrosophic uncertain linguistic variables and Choquet integral. Cogn Comput. 2016;8(6):1036–56. https://doi.org/10.1007/s12559-016-9428-2.
Rodríguez RM, Martínez L, Herrera F. Hesitant fuzzy linguistic terms sets for decision making. IEEE Trans Fuzzy Syst. 2012;20(1):109–19. https://doi.org/10.1109/TFUZZ.2011.2170076.
Rodríguez RM, Martínez L, Herrera F. A group decision making model dealing with comparative linguistic expressions based on hesitant fuzzy linguistic term set. Inf Sci. 2013;241:28–42. https://doi.org/10.1016/j.ins.2013.04.006.
Liao HC, Xu ZS, Zeng XJ. Distance and similarity measures for hesitant fuzzy linguistic term sets and their application in multi-criteria decision making. Inf Sci. 2014;271:125–42. https://doi.org/10.1016/j.ins.2014.02.125.
Wei CP, Zhao N, Tang XJ. Operators and comparisons of hesitant fuzzy linguistic term sets. IEEE Trans Fuzzy Syst. 2014;22(3):575–85. https://doi.org/10.1109/TFUZZ.2013.2269144.
Liao HC, Xu ZS. Approaches to manage hesitant fuzzy linguistic information based on the cosine distance and similarity measures for HFLTSs and their application in qualitative decision making. Expert Syst Appl. 2015;42(12):5328–36. https://doi.org/10.1016/j.eswa.2015.02.017.
Liao HC, Xu ZS, Zeng XJ, Merigó JM. Qualitative decision making with correlation coefficients of hesitant fuzzy linguistic term sets. Knowl-Based Syst. 2015;76:127–38. https://doi.org/10.1016/j.knosys.2014.12.009.
Xu ZS. Uncertain linguistic aggregation operators based approach to multiple attribute group decision making under uncertain linguistic environment. Inf Sci. 2004;168(1-4):171–84. https://doi.org/10.1016/j.ins.2004.02.003.
Xu ZS. Induced uncertain linguistic OWA operators applied to group decision making. Inform Fusion. 2006c;7(2):231–8. https://doi.org/10.1016/j.inffus.2004.06.005.
Wei GW, Zhao XF, Lin R, Wang HJ. Uncertain linguistic Bonferroni mean operators and their application to multiple attribute decision making. Appl Math Model. 2013;37(7):5277–85. https://doi.org/10.1016/j.apm.2012.10.048.
Smarandache F. Neutrosophy: neutrosophic probability, set, and logic. Rehoboth: American Research Press; 1998.
Smarandache F. Introduction to neutrosophic measure, neutrosophic integral, and neutrosophic probability. Craiova–Columbus: Sitech & Education Publisher; 2013.
Smarandache F. Introduction to neutrosophic statistics. Craiova: Sitech & Education Publishing; 2014.
Ye J. Bidirectional projection method for multiple attribute group decision making with neutrosophic numbers. Neural Comput & Applic. 2017;28(5):1021–9. https://doi.org/10.1007/s00521-015-2123-5.
Ye J. Multiple-attribute group decision-making method under a neutrosophic number environment. J Intell Syst. 2016;25(3):377–86.
Kong L, Wu Y, Ye J. Misfire fault diagnosis method of gasoline engines using the cosine similarity measure of neutrosophic numbers. Neutrosophic Sets Syst. 2015;8:43–6.
Ye J. Fault diagnoses of steam turbine using the exponential similarity measure of neutrosophic numbers. J Intell Fuzzy Syst. 2016;30(4):1927–34. https://doi.org/10.3233/IFS-151903.
Smarandache F. Symbolic neutrosophic theory. Bruxelles: EuropaNova asbl; 2015.
Ye J. Aggregation operators of neutrosophic linguistic numbers for multiple attribute group decision making. SpringerPlus. 2016;5(1691):11. https://doi.org/10.1186/s40064-016-3247-5.
Torra V, Narukawa Y. On hesitant fuzzy sets and decision. In: Proceedings of the 18th IEEE International Conference on Fuzzy Systems. Jeju Island, Korea; 2009; 1378–1382. https://doi.org/10.1109/FUZZY.2009.5276884, http://ieeexplore.ieee.org/document/5276884/
Torra V. Hesitant fuzzy sets. Int J Intell Syst. 2010;25:529–39.
Smarandache F. N-valued refined neutrosophic logic and its applications in physics. Prog Phys. 2013;4:143–6.
Smarandache F. Symbolic Neutrosophic Logic. Bruxelles: Europa Nova; 2015.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflicts of Interest
The author declares that he has no conflict of interest.
Human and Animal Rights
This article does not contain any studies with human participants or animals performed by the author.
Rights and permissions
About this article
Cite this article
Ye, J. Multiple Attribute Decision-Making Methods Based on the Expected Value and the Similarity Measure of Hesitant Neutrosophic Linguistic Numbers. Cogn Comput 10, 454–463 (2018). https://doi.org/10.1007/s12559-017-9535-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12559-017-9535-8