Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Online Handwriting, Signature and Touch Dynamics: Tasks and Potential Applications in the Field of Security and Health

  • Published:
Cognitive Computation Aims and scope Submit manuscript

Abstract

Advantageous property of behavioural signals (e.g. handwriting), in contrast to morphological ones (e.g. iris, fingerprint, hand geometry), is the possibility to ask a user to perform many different tasks. This article summarises recent findings and applications of different handwriting/drawing tasks in the field of security and health. More specifically, it is focused on on-line handwriting and hand-based interaction, i.e. signals that utilise a digitizing device (specific devoted or general-purpose tablet/smartphone) during the realization of the tasks. Such devices permit the acquisition of on-surface dynamics as well as in-air movements in time, thus providing complex and richer information when compared to the conventional “pen and paper” method. Although the scientific literature reports a wide range of tasks and applications, in this paper, we summarize only those providing competitive results (e.g. in terms of discrimination power) and having a significant impact in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Alonso-Martinez C, Faundez-Zanuy M. On the use of time information at long distance in biometric online signature recognition. In: International Tyrrhenian Workshop on Digital Communication. 2017. pp. 3–7.

  2. Faundez-Zanuy M. Signature recognition state-of-the-art. IEEE Aerosp Electron Syst Mag. 2005;20(7):28–32. https://doi.org/10.1109/MAES.2005.1499249.

    Article  Google Scholar 

  3. Sesa-Nogueras E, Faundez-Zanuy M, Mekyska J. An information analysis of in-air and on-surface trajectories in online handwriting. Cogn Comput. 2012;4(2):195–205.

    Article  Google Scholar 

  4. Alonso-Martinez C, Faundez-Zanuy M, Mekyska J. A comparative study of in-air trajectories at short and long distances in online handwriting. Cogn Comput. 2017;9(5):712–20.

    Article  Google Scholar 

  5. Impedovo D, Pirlo G. Automatic signature verification: The state of the art. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews). 2008;38(5):609–635.

  6. Impedovo D, Pirlo G. Automatic signature verification in the mobile cloud scenario: survey and way ahead. IEEE Trans Emerg Topics Comp. 2018.

  7. Impedovo D, Pirlo G. Dynamic handwriting analysis for the assessment of neurodegenerative diseases: a pattern recognition perspective. IEEE Rev Biomed Eng. 2018;12:209–20.

    Article  Google Scholar 

  8. Sesa-Nogueras E, Faundez-Zanuy M. Biometric recognition using online uppercase handwritten text. Pattern Recogn. 2012;45(1):128–44.

    Article  Google Scholar 

  9. Lopez-Xarbau J, Faundez-Zanuy M, Garnacho-Castaño M. Preliminary study on biometric recognition based on drawing tasks. In: Neural Approaches to Dynamics of Signal Exchanges. pp. 485–494. Springer. 2020.

  10. Sesa-Nogueras E, Faundez-Zanuy M, Roure-Alcobé J. Gender classification by means of online uppercase handwriting: a text-dependent allographic approach. Cogn Comput. 2016;8(1):15–29.

    Article  Google Scholar 

  11. Garnacho-Castaño MV, Faundez-Zanuy M, Lopez-Xarbau J. On the handwriting tasks’ analysis to detect fatigue. Appl Sci. 2020;10(21):7630.

    Article  Google Scholar 

  12. Likforman-Sulem L, Esposito A, Faundez-Zanuy M, Clémençon S, Cordasco G. EMOTHAW: A novel database for emotional state recognition from handwriting and drawing. IEEE Transactions on Human-Machine Systems. 2017;47(2):273–84.

    Article  Google Scholar 

  13. Marcelli A, Parziale A, Senatore R. Some observations on handwriting from a motor learning perspective. In: AFHA. 2013. vol. 1022, pp. 6–10.

  14. Impedovo D, Pirlo G, Vessio G, Angelillo MT. A handwriting-based protocol for assessing neurodegenerative dementia. Cogn Comput. 2019;11(4):576–86.

    Article  Google Scholar 

  15. Vielhauer C. A behavioural biometrics. Public Service Review: European Union. 2005;9:113–5.

    Google Scholar 

  16. Faundez-Zanuy M, Hussain A, Mekyska J, Sesa-Nogueras E, Monte-Moreno E, Esposito A, Chetouani M, Garre-Olmo J, Abel A, Smekal Z, et al. Biometric applications related to human beings: there is life beyond security. Cogn Comput. 2013;5(1):136–51.

    Article  Google Scholar 

  17. Van Gemmert AW, Teulings HL, Stelmach GE. Parkinsonian patients reduce their stroke size with increased processing demands. Brain Cogn. 2001;47(3):504–12.

    Article  Google Scholar 

  18. Zhi N, Jaeger BK, Gouldstone A, Sipahi R, Frank S. Toward monitoring Parkinson’s through analysis of static handwriting samples: A quantitative analytical framework. IEEE J Biomed Health Inform. 2016;21(2):488–95.

    Google Scholar 

  19. Wang D, Zhang Y, Yao C, Wu J, Jiao H, Liu M. Toward force-based signature verification: A pen-type sensor and preliminary validation. IEEE Trans Instrum Meas. 2009;59(4):752–62.

    Article  Google Scholar 

  20. Impedovo D. Velocity-based signal features for the assessment of Parkinsonian handwriting. IEEE Signal Process Lett. 2019;26(4):632–6.

    Article  Google Scholar 

  21. Mucha J, Mekyska J, Galaz Z, Faundez-Zanuy M, Lopez-de Ipina K, Zvoncak V, Kiska T, Smekal Z, Brabenec L, Rektorova I. Identification and monitoring of Parkinson’s disease dysgraphia based on fractional-order derivatives of online handwriting. Appl Sci. 2018;8(12):2566.

    Article  Google Scholar 

  22. Pirlo G, Diaz M, Ferrer MA, Impedovo D, Occhionero F, Zurlo U. Early diagnosis of neurodegenerative diseases by handwritten signature analysis. In: International Conference on Image Analysis and Processing. 2015. pp. 290–297. Springer.

  23. Caligiuri MP, Mohammed L. Signature dynamics in Alzheimer’s disease. Forensic Sci Int. 2019;302.

    Article  Google Scholar 

  24. Renier M, Gnoato F, Tessari A, Formilan M, Busonera F, Albanese P, Sartori G, Cester A. A correlational study between signature, writing abilities and decision-making capacity among people with initial cognitive impairment. Aging Clin Exp Res. 2016;28(3):505–11.

    Article  Google Scholar 

  25. Carmona-Duarte C, de Torres-Peralta R, Diaz M, Ferrer MA, Martin-Rincon M. Myoelectronic signal-based methodology for the analysis of handwritten signatures. Hum Mov Sci. 2017;55:18–30.

    Article  Google Scholar 

  26. Miguel-Hurtado O, Guest R, Stevenage SV, Neil GJ. The relationship between handwritten signature production and personality traits. In: IEEE International Joint Conference on Biometrics. 2014. pp. 1–8. IEEE.

  27. Lozhnikov P, Sulavko A, Borisov R, Zhumazhanova S. Perspectives of subjects’ psychophysiological state identification using dynamic biometric features. In: Journal of Physics: Conference Series, vol. 1050, p. 012046. IOP Publishing. 2018.

  28. Schlapbach A, Liwicki M, Bunke H. A writer identification system for on-line whiteboard data. Pattern Recogn. 2008;41(7):2381–97.

    Article  MATH  Google Scholar 

  29. Jain AK, Lee JE, Jin R. Graffiti-ID: matching and retrieval of graffiti images. In: Proceedings of the First ACM workshop on Multimedia in forensics. 2009. pp. 1–6.

  30. Folstein MF, Folstein SE, McHugh PR. mini-mental state: a practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975;12(3):189–98.

    Article  Google Scholar 

  31. Caffarra P, Gardini S, Dieci F, Copelli S, Maset L, Concari L, Farina E, Grossi E. The qualitative scoring MMSE pentagon test (QSPT): a new method for differentiating dementia with Lewy body from Alzheimer’s disease. Behav Neurol. 2013;27(2):213–20.

    Article  Google Scholar 

  32. Park I, Kim YJ, Kim YJ, Lee U. Automatic, qualitative scoring of the interlocking pentagon drawing test (PDT) based on U-net and mobile sensor data. Sensors. 2020;20(5):1283.

    Article  Google Scholar 

  33. Van der Stigchel S, De Bresser J, Heinen R, Koek HL, Reijmer YD, Biessels GJ, Van Den Berg E, et al. Parietal involvement in constructional apraxia as measured using the pentagon copying task. Dement Geriatr Cogn Disord. 2018;46(1–2):50–9.

    Google Scholar 

  34. Larner AJ. Addenbrooke’s cognitive examination-revised (ACE-R) in day-to-day clinical practice. Age Ageing. 2007;36(6):68–686.

    Article  Google Scholar 

  35. Kim H, Cho YS, Do EYL. Computational clock drawing analysis for cognitive impairment screening. In: Proceedings of the fifth international conference on tangible, embedded, and embodied interaction. 2010. pp. 297–300.

  36. Harbi Z, Hicks Y, Setchi R, Bayer A. Segmentation of clock drawings based on spatial and temporal features. Procedia Computer Science. 2015;60:1640–8.

    Article  Google Scholar 

  37. Harbi Z, Hicks Y, Setchi R. Clock drawing test digit recognition using static and dynamic features. Procedia Computer Science. 2016;96:1221–30.

    Article  Google Scholar 

  38. Müller S, Preische O, Heymann P, Elbing U, Laske C. Increased diagnostic accuracy of digital vs. conventional clock drawing test for discrimination of patients in the early course of Alzheimer’s disease from cognitively healthy individuals. Frontiers in aging neuroscience. 2017;9:101.

  39. Faundez-Zanuy M, Mekyska J. Privacy of online handwriting biometrics related to biomedical analysis. 2017.

  40. Garre-Olmo J, Faúndez-Zanuy M, López-de Ipiña K, Calvó-Perxas L, Turró-Garriga O. Kinematic and pressure features of handwriting and drawing: preliminary results between patients with mild cognitive impairment, Alzheimer disease and healthy controls. Curr Alzheimer Res. 2017;14(9):960–8.

    Article  Google Scholar 

  41. San Luciano M, Wang C, Ortega RA, Yu Q, Boschung S, Soto-Valencia J, Bressman SB, Lipton RB, Pullman S, Saunders-Pullman R. Digitized spiral drawing: a possible biomarker for early Parkinson’s disease. PLoS ONE. 2016;11(10).

    Article  Google Scholar 

  42. Saunders-Pullman R, Derby C, Stanley K, Floyd A, Bressman S, Lipton RB, Deligtisch A, Severt L, Yu Q, Kurtis M, et al. Validity of spiral analysis in early Parkinson’s disease. Mov Disord. 2008;23(4):531–7.

    Article  Google Scholar 

  43. Caligiuri M, Snell C, Park S, Corey-Bloom J. Handwriting movement abnormalities in symptomatic and premanifest Huntington’s disease. Movement disorders clinical practice. 2019;6(7):586–92.

    Article  Google Scholar 

  44. Ferleger BI, Sonnet KS, Morriss TH, Ko AL, Chizeck HJ, Herron JA. A tablet-and mobile-based application for remote diagnosis and analysis of movement disorder symptoms. In: 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). 2020. pp. 5588–5591.

  45. Louis ED, Yu Q, Floyd A, Moskowitz C, Pullman SL. Axis is a feature of handwritten spirals in essential tremor. Movement disorders: official journal of the Movement Disorder Society. 2006;21(8):1294–5.

    Article  Google Scholar 

  46. Motin MA, Peters J, Perju-Dumbrava L, Ding C, Eller M, Raghav S, Ali SM, Kempster P, Radcliffe P, Kumar DK. Computerized screening of essential tremor and level of severity using consumer tablet. IEEE Access. 2021;9:15404–12.

    Article  Google Scholar 

  47. Pullman SL. Spiral analysis: a new technique for measuring tremor with a digitizing tablet. Mov Disord. 1998;13(S3):85–9.

    Article  Google Scholar 

  48. Galaz Z, Mucha J, Zvoncak V, Mekyska J, Smekal Z, Safarova K, Ondrackova A, Urbanek T, Havigerova JM, Bednarova J, et al. Advanced parametrization of graphomotor difficulties in school-aged children. IEEE Access. 2020;8:112883–97.

    Article  Google Scholar 

  49. Ratliff J, Ortega RA, Ooi HY, Mirallave A, Glickman A, Yu Q, Raymond D, Bressman S, Pullman S, Saunders-Pullman R. Digitized spiral analysis may be a potential biomarker for brachial dystonia. Parkinsonism Relat Disord. 2018;57:16–21.

    Article  Google Scholar 

  50. Caligiuri MP, Teulings HL, Dean CE, Lohr JB. The nature of bradykinesia in schizophrenia treated with antipsychotics. Psychiatry Res. 2019;273:537–43.

    Article  Google Scholar 

  51. Smits EJ, Tolonen AJ, Cluitmans L, Van Gils M, Conway BA, Zietsma RC, Leenders KL, Maurits NM. Standardized handwriting to assess bradykinesia, micrographia and tremor in Parkinson’s disease. PLoS ONE. 2014;9(5).

    Article  Google Scholar 

  52. Corwin J, Bylsma F. Psychological examination of traumatic encephalopathy. Clinical Neuropsychologist. 1993;7:3–21.

    Article  Google Scholar 

  53. De Lucia N, Peluso S, De Rosa A, Salvatore E, De Michele G, et al. Constructional apraxia is related to different cognitive defects across dementia. J Alzheimers Dis Parkinsonism. 2016;6(244):2161–0460.

    Google Scholar 

  54. Dahmen J, Cook D, Fellows R, Schmitter-Edgecombe M. An analysis of a digital variant of the trail making test using machine learning techniques. Technol Health Care. 2017;25(2):251–64.

    Article  Google Scholar 

  55. Llinàs-Reglà J, Vilalta-Franch J, López-Pousa S, Calvó-Perxas L, Torrents Rodas D, Garre-Olmo J. The trail making test: association with other neuropsychological measures and normative values for adults aged 55 years and older from a Spanish-Speaking Population-based sample. Assessment. 2017;24(2):183–96.

    Article  Google Scholar 

  56. Park SY, Schott N. The trail-making-test: Comparison between paper-and-pencil and computerized versions in young and healthy older adults. Appl Neuropsych: Adult. 2020. pp. 1–13.

  57. Ishikawa T, Nemoto M, Nemoto K, Takeuchi T, Numata Y, Watanabe R, Tsukada E, Ota M, Higashi S, Arai T, et al. Handwriting features of multiple drawing tests for early detection of Alzheimer’s disease: A preliminary result. In: MedInfo. 2019. pp. 168–172.

  58. Della Sala S, Laiacona M, Spinnler H, Ubezio C. A cancellation test: its reliability in assessing attentional deficits in Alzheimer’s disease. Psych Med London. 1992;22:885–885.

    Article  Google Scholar 

  59. Bhatt S, Santhanam T. Keystroke dynamics for biometric authentication — a survey. In: 2013 international conference on pattern recognition, informatics and mobile engineering. 2013. pp. 17–23.

  60. Monrose F, Rubin AD. Keystroke dynamics as a biometric for authentication. Futur Gener Comput Syst. 2000;16(4):351–9.

    Article  Google Scholar 

  61. Teh PS, Teoh ABJ, Yue S. A survey of keystroke dynamics biometrics. Sci World J. 2013.

  62. Teh PS, Zhang N, Teoh ABJ, Chen K. A survey on touch dynamics authentication in mobile devices. Comput Secur. 2016;59:210–35.

    Article  Google Scholar 

  63. Ellavarason E, Guest R, Deravi F, Sanchez-Riello R, Corsetti B. Touch-dynamics based behavioural biometrics on mobile devices - a review from a usability and performance perspective. ACM Computing Surveys (CSUR). 2020;53(6):1–36.

    Article  Google Scholar 

  64. García AM, Ibáñez A. A touch with words: dynamic synergies between manual actions and language. Neuroscience & Biobehavioral Reviews. 2016;68:59–95.

    Article  Google Scholar 

  65. Van Waes L, Leijten M, Mariën P, Engelborghs S. Typing competencies in Alzheimer’s disease: an exploration of copy tasks. Comput Hum Behav. 2017;73:311–9.

    Article  Google Scholar 

  66. Teulings HL, Contreras-Vidal JL, Stelmach GE, Adler CH. Parkinsonism reduces coordination of fingers, wrist, and arm in fine motor control. Exp Neurol. 1997;146(1):159–70.

    Article  Google Scholar 

  67. Iakovakis D, Hadjidimitriou S, Charisis V, Bostantzopoulou S, Katsarou Z, Hadjileontiadis LJ. Touchscreen typing-pattern analysis for detecting fine motor skills decline in early-stage parkinson’s disease. Sci Rep. 2018;8(1):1–13.

    Article  Google Scholar 

  68. Noyce AJ, Nagy A, Acharya S, Hadavi S, Bestwick JP, Fearnley J, Lees AJ, Giovannoni G. Bradykinesia-akinesia incoordination test: validating an online keyboard test of upper limb function. PLoS ONE. 2014;9(4).

    Article  Google Scholar 

  69. Giancardo L, Sanchez-Ferro A, Arroyo-Gallego T, Butterworth I, Mendoza CS, Montero P, Matarazzo M, Obeso JA, Gray ML, Estépar RSJ. Computer keyboard interaction as an indicator of early Parkinson’s disease. Sci Rep. 2016;6(1):1–10.

    Article  Google Scholar 

  70. Tian F, Fan X, Fan J, Zhu Y, Gao J, Wang D, Bi X, Wang H. What can gestures tell? Detecting motor impairment in early Parkinson’s from common touch gestural interactions. In: Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems. 2019. pp. 1–14.

  71. Lipsmeier F, Taylor KI, Kilchenmann T, Wolf D, Scotland A, Schjodt-Eriksen J, Cheng WY, Fernandez-Garcia I, Siebourg-Polster J, Jin L, et al. Evaluation of smartphone-based testing to generate exploratory outcome measures in a phase 1 Parkinson’s disease clinical trial. Mov Disord. 2018;33(8):1287–97.

    Article  Google Scholar 

  72. Deuschl G, Wenzelburger R, Löffler K, Raethjen J, Stolze H. Essential tremor and cerebellar dysfunction clinical and kinematic analysis of intention tremor. Brain. 2000;123(8):1568–80.

    Article  Google Scholar 

  73. Smith MA, Brandt J, Shadmehr R. Motor disorder in Huntington’s disease begins as a dysfunction in error feedback control. Nature. 2000;403(6769):544–9.

    Article  Google Scholar 

  74. Stringer G, Couth S, Brown L, Montaldi D, Gledson A, Mellor J, Sutcliffe A, Sawyer P, Keane J, Bull C, et al. Can you detect early dementia from an email? A proof of principle study of daily computer use to detect cognitive and functional decline. Int J Geriatr Psychiatry. 2018;33(7):867–74.

    Article  Google Scholar 

  75. Gledson A, Asfiandy D, Mellor J, Ba-Dhfari TOF, Stringer G, Couth S, Burns A, Leroi I, Zeng X, Keane J, et al. Combining mouse and keyboard events with higher level desktop actions to detect mild cognitive impairment. In: 2016 IEEE International Conference on Healthcare Informatics (ICHI). 2016. pp. 139–145.

  76. Balducci F, Impedovo D, Macchiarulo N, Pirlo G. Affective states recognition through touch dynamics. Multimedia Tools and Applications. 2020;79(47):35909–26.

    Article  Google Scholar 

  77. Mastoras RE, Iakovakis D, Hadjidimitriou S, Charisis V, Kassie S, Alsaadi T, Khandoker A, Hadjileontiadis LJ. Touchscreen typing pattern analysis for remote detection of the depressive tendency. Sci Rep. 2019;9(1):1–12.

    Article  Google Scholar 

  78. Diaz M, Ferrer MA, Impedovo D, Malik MI, Pirlo G, Plamondon R. A perspective analysis of handwritten signature technology. Acm Computing Surveys (Csur). 2019;51(6):1–39.

    Article  Google Scholar 

  79. Wang Z, Abazid M, Houmani N, Garcia-Salicetti S, Rigaud AS. Online signature analysis for characterizing early stage Alzheimer’s disease: A feasibility study. Entropy. 2019;21(10):956.

    Article  Google Scholar 

  80. Houmani N, Mayoue A, Garcia-Salicetti S, Dorizzi B, Khalil MI, Moustafa MN, Abbas H, Muramatsu D, Yanikoglu B, Kholmatov A, et al. BioSecure signature evaluation campaign (BSEC’2009): Evaluating online signature algorithms depending on the quality of signatures. Pattern Recogn. 2012;45(3):993–1003.

    Article  Google Scholar 

  81. Malik MI, Ahmed S, Marcelli A, Pal U, Blumenstein M, Alewijns L, Liwicki M. ICDAR2015 competition on signature verification and writer identification for on-and off-line skilled forgeries (SigWIcomp2015). In: 2015 13th International Conference on Document Analysis and Recognition (ICDAR). 2015. pp. 1186–1190.

  82. Yeung DY, Chang H, Xiong Y, George S, Kashi R, Matsumoto T, Rigoll G. SVC2004: First international signature verification competition. In: International conference on biometric authentication. 2004. pp. 16–22. Springer.

  83. Drotár P, Mekyska J, Rektorová I, Masarová L, Smékal Z, Faundez-Zanuy M. Decision support framework for Parkinson’s disease based on novel handwriting markers. IEEE Trans Neural Syst Rehabil Eng. 2014;23(3):508–16.

    Article  Google Scholar 

  84. Drotár P, Mekyska J, Rektorová I, Masarová L, Smékal Z, Faundez-Zanuy M. Evaluation of handwriting kinematics and pressure for differential diagnosis of Parkinson’s disease. Artif Intell Med. 2016;67:39–46.

    Article  Google Scholar 

  85. Parziale A, Senatore R, DellaCioppa A, Marcelli A. Cartesian genetic programming for diagnosis of Parkinson disease through handwriting analysis: Performance vs. interpretability issues. Art Int Med. 2021;111:101984.

  86. Chen Z, Yu HX, Wu A, Zheng WS. Level online writer identification. Int J Comp Vis. 2021. pp. 1–16.

  87. Gargot T, Asselborn T, Pellerin H, Zammouri I, Anzalone MS, Casteran L, Johal W, Dillenbourg P, Cohen D, Jolly C. Acquisition of handwriting in children with and without dysgraphia: A computational approach. PloS one. 2020;15(9):e0237575

  88. Zvoncak V, Mekyska J, Safarova K, Smekal Z, Brezany P. New approach of dysgraphic handwriting analysis based on the tunable Q-Factor wavelet transform. In: 2019 42nd International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO). 2019. pp. 289–294. IEEE.

  89. Ahmed M, Rasool AG, Afzal H, Siddiqi I. Improving handwriting based gender classification using ensemble classifiers. Expert Syst Appl. 2017;85:158–68.

    Article  Google Scholar 

  90. Djeddi C, Al-Maadeed S, Gattal A, Siddiqi I, Souici-Meslati L, ElAbed H. ICDAR2015 competition on multi-script writer identification and gender classification using ’QUWI’ database. In: 2015 13th International Conference on Document Analysis and Recognition (ICDAR). 2015. pp. 1191–1195.

  91. Gattal A, Djeddi C, Siddiqi I, Chibani Y. Gender classification from offline multi-script handwriting images using oriented basic image features (oBIFs). Expert Syst Appl. 2018;99:155–67.

    Article  Google Scholar 

  92. Liwicki M, Schlapbach A, Bunke H. Automatic gender detection using on-line and off-line information. Pattern Anal Appl. 2011;14(1):87–92.

    Article  MathSciNet  Google Scholar 

  93. Liwicki M, Schlapbach A, Loretan P, Bunke H. Automatic detection of gender and handedness from on-line handwriting. In: Proc. 13th Conf. of the Graphonomics Society. 2007. pp. 179–183.

  94. Laniel P, Faci N, Plamondon R, Beauchamp MH, Gauthier B. Kinematic analysis of fast pen strokes in children with ADHD. Appl Neuropsychol Child. 2020;9(2):125–40.

    Article  Google Scholar 

  95. Li B, Sun Z, Tan T. Online text-independent writer identification based on stroke’s probability distribution function. In: International conference on biometrics. 2007. pp. 201–210.

  96. Venugopal V, Sundaram S. An improved online writer identification framework using codebook descriptors. Pattern Recogn. 2018;78:318–30.

    Article  Google Scholar 

  97. Venugopal V, Sundaram S. Modified sparse representation classification framework for online writer identification. IEEE Transactions on Systems, Man, and Cybernetics: Systems. 2018.

  98. Yang W, Jin L, Liu M. Deepwriterid: An end-to-end online text-independent writer identification system. IEEE Intell Syst. 2016;31(2):45–53.

    Article  MathSciNet  Google Scholar 

  99. Rosenblum S, Ben-Simhon HA, Meyer S, Gal E. Predictors of handwriting performance among children with autism spectrum disorder. Research in Autism Spectrum Disorders. 2019;60:16–24.

    Article  Google Scholar 

  100. Schabos O, Hoffmann K, Enzi B, Juckel G, Mavrogiorgou P. Kinematic analysis of handwriting movements in individuals with intellectual disabilities with and without obsessive compulsive symptoms. Psychopathology. 2019;52(6):346–57.

    Article  Google Scholar 

  101. Hassaïne A, AlMaadeed S, Aljaam J, Jaoua A. ICDAR 2013 competition on gender prediction from handwriting. In: 2013 12th International Conference on Document Analysis and Recognition. 2013. pp. 1417–1421.

  102. Foley RG, Miller AL. The effects of marijuana and alcohol usage on handwriting. Forensic Sci Int. 1979;14(3):159–64.

    Article  Google Scholar 

  103. Phillips JG, Ogeil RP, Müller F. Alcohol consumption and handwriting: A kinematic analysis. Hum Mov Sci. 2009;28(5):619–32.

    Article  Google Scholar 

  104. Tucha O, Walitza S, Mecklinger L, Stasik D, Sontag TA, Lange KW. The effect of caffeine on handwriting movements in skilled writers. Hum Mov Sci. 2006;25(4–5):523–35.

    Article  Google Scholar 

  105. Tong W, Lee JE, Jin R, Jain AK. Gang and moniker identification by graffiti matching. In: Proceedings of the 3rd international ACM workshop on Multimedia in forensics and intelligence. 2011. pp. 1–6.

  106. Sunderland T, Hill JL, Mellow AM, Lawlor BA, Gundersheimer J, Newhouse PA, Grafman JH. Clock drawing in Alzheimer’s disease: a novel measure of dementia severity. J Am Geriatr Soc. 1989;37(8):725–9.

    Article  Google Scholar 

  107. Heinik J, Werner P, Dekel T, Gurevitz I, Rosenblum S. Computerized kinematic analysis of the clock drawing task in elderly people with mild major depressive disorder: an exploratory study. Int Psychogeriatr. 2010;22(3):479.

    Article  Google Scholar 

  108. Müller S, Preische O, Heymann P, Elbing U, Laske C. Diagnostic value of a tablet-based drawing task for discrimination of patients in the early course of Alzheimer’s disease from healthy individuals. Journal of Alzheimer’s Disease. 2017;55(4):1463–9.

    Article  Google Scholar 

  109. Fiz JA, Faundez-Zanuy M, Monte-Moreno E, Alcobé JR, Andreo F, Gomez R, Manzano JR. Short term oxygen therapy effects in hypoxemic patients measured by drawing analysis. Comput Methods Programs Biomed. 2015;118(3):330–6.

    Article  Google Scholar 

  110. Vaivre-Douret L, Lopez C, Dutruel A, Vaivre S. Phenotyping features in the genesis of pre-scriptural gestures in children to assess handwriting developmental levels. Sci Rep. 2021;11(1):1–13.

    Article  Google Scholar 

  111. Crespo Y, Ibañez A, Soriano MF, Iglesias S, Aznarte JI. Handwriting movements for assessment of motor symptoms in schizophrenia spectrum disorders and bipolar disorder. PLoS ONE. 2019;14(3).

    Article  Google Scholar 

  112. Mekyska J, Faundez-Zanuy M, Mzourek Z, Galaz Z, Smekal Z, Rosenblum S. Identification and rating of developmental dysgraphia by handwriting analysis. IEEE Transactions on Human-Machine Systems. 2016;47(2):235–48.

    Article  Google Scholar 

  113. Cheah WT, Chang WD, Hwang JJ, Hong SY, Fu LC, Chang YL. A screening system for mild cognitive impairment based on neuropsychological drawing test and neural network. In: 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC). 2019. pp. 3543–3548.

  114. Kim KW, Lee SY, Choi J, Chin J, Lee BH, Na DL, Choi JH. A comprehensive evaluation of the process of copying a complex figure in early-and late-onset Alzheimer disease: A quantitative analysis of digital pen data. J Med Internet Res. 2020;22(8).

    Article  Google Scholar 

  115. Robens S, Heymann P, Gienger R, Hett A, Müller S, Laske C, Loy R, Ostermann T, Elbing U. The digital tree drawing test for screening of early dementia: An explorative study comparing healthy controls, patients with mild cognitive impairment, and patients with early dementia of the Alzheimer type. Journal of Alzheimer’s Disease. 2019;68(4):1561–74.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Spanish grant PID2020-113242RB-I00, and by grants NU20-04-00294 (Diagnostics of Lewy body diseases in prodromal stage based on multimodal data analysis), and PRIN2017 – BullyBuster project – A framework for bullying and cyberbullying action detection by computer vision and artificial intelligence methods and algorithms. CUP: H94I19000230006.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcos Faundez-Zanuy.

Ethics declarations

Conflicts of Interest

The authors declare that they have no conflict of interest.

Ethical Standard

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. For this type of study formal consent is not required. This chapter does not contain any studies with animals performed by any of the authors.

Informed Consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Faundez-Zanuy, M., Mekyska, J. & Impedovo, D. Online Handwriting, Signature and Touch Dynamics: Tasks and Potential Applications in the Field of Security and Health. Cogn Comput 13, 1406–1421 (2021). https://doi.org/10.1007/s12559-021-09938-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12559-021-09938-2

Keywords