Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Mittag–Leffler Stability for Impulsive Caputo Fractional Differential Equations

  • Original Research
  • Published:
Differential Equations and Dynamical Systems Aims and scope Submit manuscript

Abstract

The stability properties of Caputo fractional differential equations with impulses are studied. Both types of impulses, non-instantaneous impulses as well as instantaneous impulses are considered. The two approaches in the literature for the interpretation ofsolutions of impulsive Caputo fractional differential equations are presented and discussed. A generalization of Mittag–Leffler stability with respect to both types of impulses is given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Agarwal, R., Benchohra, M., Slimani, B.: Existence results for differential equations with fractional order and impulses. Mem. Differ. Equ. Math. Phys 44, 1–21 (2008)

    Article  MathSciNet  Google Scholar 

  2. Agarwal, R., Hristova, S., O’Regan, D.: Lyapunov functions and strict stability of Caputo fractional differential equations. Adv. Diff. Equ. 2015, 346 (2015). doi:10.1186/s13662-015-0674-5

    Article  MathSciNet  MATH  Google Scholar 

  3. Agarwal, R., O’Regan, D., Hristova, S.: Stability by Lyapunov functions of nonlinear differential equations with non-instantaneous impulses. J. Appl. Math. Comput., 1–22 (2015). doi:10.1007/s12190-015-0961-z

  4. Agarwal, R., O’Regan, D., Hristova, S.: Stability of Caputo fractional differential equations by Lyapunov functions. Appl. Math. 60(6), 653–676 (2015)

    Article  MathSciNet  Google Scholar 

  5. Agarwal, R., Hristova, S., O’Regan, D.: A survey of Lyapunov functions, stability and impulsive Caputo fractional differential equations. Frac. Calc. Appl. Anal. 19(2), 290–318 (2016)

    Article  MathSciNet  Google Scholar 

  6. Bai, L., Nieto, J.J.: Variational approach to differential equations with not instantaneous impulses. Appl. Math. Lett. 73, 44–48 (2017)

    Article  MathSciNet  Google Scholar 

  7. Bai, L., Nieto, J.J., Wang, X.: Variational approach to non-instantaneous impulsive nonlinear differential equations. J. Nonlinear Sci. Appl. 10, 2440–2448 (2017)

    Article  MathSciNet  Google Scholar 

  8. Colao, V., Muglia, L., Xu, H.-K.: Existence of solutions for a second-order differential equation with noninstantaneous impulses and delay. Ann. Mat. Pura Appl. 19, 697–716 (2016)

    Article  Google Scholar 

  9. Das, Sh: Functional Fractional Calculus. Springer, Berlin (2011)

    Book  Google Scholar 

  10. Diethelm, K.: The Analysis of Fractional Differential Equations. Springer, Berlin (2010)

    Book  Google Scholar 

  11. Devi, J.V., Mc Rae, F.A., Drici, Z.: Variational Lyapunov method for fractional differential equations. Comput. Math. Appl. 64, 2982–2989 (2012)

    Article  MathSciNet  Google Scholar 

  12. Feckan, M., Zhou, Y., Wang, J.R.: On the concept and existence of solution for impulsive fractional differential equations. Commun. Nonlinear Sci. Numer. Simul. 17, 3050–3060 (2012)

    Article  MathSciNet  Google Scholar 

  13. Hernndez, E., ORegan, D.: On a new class of abstract impulsive differential equations. Proc. Am. Math. Soc. 141, 1641–1649 (2013)

    Article  MathSciNet  Google Scholar 

  14. Lakshmikantham, V., Bainov, D.D., Simeonov, P.S.: Theory of Impulsive Differential Equations. World Scientiffic, Singapore (1989)

    Book  Google Scholar 

  15. Lakshmikantham, V., Leela, S., Devi, J.V.: Theory of Fractional Dynamical Systems. Cambridge Scientific Publishers, Cambridge (2009)

    MATH  Google Scholar 

  16. Lakshmikantham, V., Leela, S., Sambandham, M.: Lyapunov theory for fractional differential equations. Commun. Appl. Anal. 12(4), 365–376 (2008)

    MathSciNet  MATH  Google Scholar 

  17. Li, P., Xu, Ch.: Boundary value problems of fractional order differential equation with integral boundary conditions and not instantaneous impulses. J. Funct. Sp. (2015) (Article ID 954925)

  18. Li, Y., Chen, Y., Podlubny, I.: Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized Mittag-Leffler stability. Comput. Math. Appl. 59(5), 1810–1821 (2010)

    Article  MathSciNet  Google Scholar 

  19. Pandey, D.N., Das, S., Sukavanam, N.: Existence of solutions for a second order neutral differential equation with state dependent delay and not instantaneous impulses. Int. J. Nonlinear Sci. 18(2), 145–155 (2014)

    MathSciNet  MATH  Google Scholar 

  20. Pierri, M., Henrquez, H.R., Prokopczyk, A.: Global solutions for abstract differential equations with noninstantaneous impulses. Mediterr. J. Math., 1–24 (2015)

  21. Pierri, M., O’Regan, D., Rolnik, V.: Existence of solutions for semi-linear abstract differential equations with not instantaneous impulses. Appl. Math. Comput. 219, 6743–6749 (2013)

    MathSciNet  MATH  Google Scholar 

  22. Li, Y., Chen, Y., Podlubny, I.: Mittag–Leffler stability of fractional order nonlinear dynamic systems. Automatica 45, 1965–1969 (2009)

    Article  MathSciNet  Google Scholar 

  23. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  24. Samoilenko, A.M., Perestyuk, N.A.: Impulsive Differential Equations. World Scientiffic, Singapore (1995)

    Book  Google Scholar 

  25. Stamova, I.M.: Mittag–Leffler stability of impulsive differential equations of fractional order. Q. Appl. Math. 73(3), 239–244 (2015)

    Article  MathSciNet  Google Scholar 

  26. Wang, J.R., Feckan, M., Zhou, Y.: A survey on impulsive fractional differential equations. Frac. Calc. Appl. Anal. 19(4), 806–831 (2016)

    Article  MathSciNet  Google Scholar 

  27. Wang, J.R., Zhou, Y., Lin, Z.: On a new class of impulsive fractional differential equations. Appl. Math. Coput. 242, 649–657 (2014)

    MathSciNet  MATH  Google Scholar 

  28. Yang, X., Li, C., Huang, T., Song, Q.: Mittag–Leffler stability analysis of nonlinear fractional order systems with impulses. Appl. Math. Comput. 293, 416–422 (2017)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Agarwal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agarwal, R., Hristova, S. & O’Regan, D. Mittag–Leffler Stability for Impulsive Caputo Fractional Differential Equations. Differ Equ Dyn Syst 29, 689–705 (2021). https://doi.org/10.1007/s12591-017-0384-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12591-017-0384-4

Keywords