Abstract
The stability properties of Caputo fractional differential equations with impulses are studied. Both types of impulses, non-instantaneous impulses as well as instantaneous impulses are considered. The two approaches in the literature for the interpretation ofsolutions of impulsive Caputo fractional differential equations are presented and discussed. A generalization of Mittag–Leffler stability with respect to both types of impulses is given.
Similar content being viewed by others
References
Agarwal, R., Benchohra, M., Slimani, B.: Existence results for differential equations with fractional order and impulses. Mem. Differ. Equ. Math. Phys 44, 1–21 (2008)
Agarwal, R., Hristova, S., O’Regan, D.: Lyapunov functions and strict stability of Caputo fractional differential equations. Adv. Diff. Equ. 2015, 346 (2015). doi:10.1186/s13662-015-0674-5
Agarwal, R., O’Regan, D., Hristova, S.: Stability by Lyapunov functions of nonlinear differential equations with non-instantaneous impulses. J. Appl. Math. Comput., 1–22 (2015). doi:10.1007/s12190-015-0961-z
Agarwal, R., O’Regan, D., Hristova, S.: Stability of Caputo fractional differential equations by Lyapunov functions. Appl. Math. 60(6), 653–676 (2015)
Agarwal, R., Hristova, S., O’Regan, D.: A survey of Lyapunov functions, stability and impulsive Caputo fractional differential equations. Frac. Calc. Appl. Anal. 19(2), 290–318 (2016)
Bai, L., Nieto, J.J.: Variational approach to differential equations with not instantaneous impulses. Appl. Math. Lett. 73, 44–48 (2017)
Bai, L., Nieto, J.J., Wang, X.: Variational approach to non-instantaneous impulsive nonlinear differential equations. J. Nonlinear Sci. Appl. 10, 2440–2448 (2017)
Colao, V., Muglia, L., Xu, H.-K.: Existence of solutions for a second-order differential equation with noninstantaneous impulses and delay. Ann. Mat. Pura Appl. 19, 697–716 (2016)
Das, Sh: Functional Fractional Calculus. Springer, Berlin (2011)
Diethelm, K.: The Analysis of Fractional Differential Equations. Springer, Berlin (2010)
Devi, J.V., Mc Rae, F.A., Drici, Z.: Variational Lyapunov method for fractional differential equations. Comput. Math. Appl. 64, 2982–2989 (2012)
Feckan, M., Zhou, Y., Wang, J.R.: On the concept and existence of solution for impulsive fractional differential equations. Commun. Nonlinear Sci. Numer. Simul. 17, 3050–3060 (2012)
Hernndez, E., ORegan, D.: On a new class of abstract impulsive differential equations. Proc. Am. Math. Soc. 141, 1641–1649 (2013)
Lakshmikantham, V., Bainov, D.D., Simeonov, P.S.: Theory of Impulsive Differential Equations. World Scientiffic, Singapore (1989)
Lakshmikantham, V., Leela, S., Devi, J.V.: Theory of Fractional Dynamical Systems. Cambridge Scientific Publishers, Cambridge (2009)
Lakshmikantham, V., Leela, S., Sambandham, M.: Lyapunov theory for fractional differential equations. Commun. Appl. Anal. 12(4), 365–376 (2008)
Li, P., Xu, Ch.: Boundary value problems of fractional order differential equation with integral boundary conditions and not instantaneous impulses. J. Funct. Sp. (2015) (Article ID 954925)
Li, Y., Chen, Y., Podlubny, I.: Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized Mittag-Leffler stability. Comput. Math. Appl. 59(5), 1810–1821 (2010)
Pandey, D.N., Das, S., Sukavanam, N.: Existence of solutions for a second order neutral differential equation with state dependent delay and not instantaneous impulses. Int. J. Nonlinear Sci. 18(2), 145–155 (2014)
Pierri, M., Henrquez, H.R., Prokopczyk, A.: Global solutions for abstract differential equations with noninstantaneous impulses. Mediterr. J. Math., 1–24 (2015)
Pierri, M., O’Regan, D., Rolnik, V.: Existence of solutions for semi-linear abstract differential equations with not instantaneous impulses. Appl. Math. Comput. 219, 6743–6749 (2013)
Li, Y., Chen, Y., Podlubny, I.: Mittag–Leffler stability of fractional order nonlinear dynamic systems. Automatica 45, 1965–1969 (2009)
Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)
Samoilenko, A.M., Perestyuk, N.A.: Impulsive Differential Equations. World Scientiffic, Singapore (1995)
Stamova, I.M.: Mittag–Leffler stability of impulsive differential equations of fractional order. Q. Appl. Math. 73(3), 239–244 (2015)
Wang, J.R., Feckan, M., Zhou, Y.: A survey on impulsive fractional differential equations. Frac. Calc. Appl. Anal. 19(4), 806–831 (2016)
Wang, J.R., Zhou, Y., Lin, Z.: On a new class of impulsive fractional differential equations. Appl. Math. Coput. 242, 649–657 (2014)
Yang, X., Li, C., Huang, T., Song, Q.: Mittag–Leffler stability analysis of nonlinear fractional order systems with impulses. Appl. Math. Comput. 293, 416–422 (2017)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Agarwal, R., Hristova, S. & O’Regan, D. Mittag–Leffler Stability for Impulsive Caputo Fractional Differential Equations. Differ Equ Dyn Syst 29, 689–705 (2021). https://doi.org/10.1007/s12591-017-0384-4
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12591-017-0384-4